Urszula Starczyk
Silesian University of Technology
Institute of Informatics

Properties of image processing logic functions

Transformations operating on a finite window can be expressed by a logic function, whose
variables correspond to points from the neighbourhood defined by the processing window [2]. As-
suming operating on binary images, pixels values can be directly interpreted as variables values
of a logic function, allowing for evaluation of the output. Basic morphological transformations
of dilation and erosion can be expressed respectively as logical sum and logical product.

Logic functions can possess properties that are useful in their transformations or implemen-
tation. These properties can be detected either at a logic synthesis stage or, by some auxiliary
algorithms applied to formal representation types of a function. Among important functional
properties there are such as degeneracy, symmetry, monotonicinity, and decomposability.

Properties a logic function specifying image transformation can be viewed either from the
point of theory of logic circuits or image processing. Due to the fact that independent variables
of the function correspond to considered pixels of an image, contained in a processing window,
these variables acquire some geometrical meaning apart from inherent algebraic and logic.

An important characteristic of these functions is the fact that they are always complete-
ly specified, which results from necessity to produce the output value for all input combina-
tions. In switching circuit theory do not care conditions are assumed for situations that are not
valid for a considered problem. In image processing none of input combinations can be called
invalid—images can contain all kinds of data, as long as they are within specified class. For
all patterns in the processing window there is always defined an answer giving the value of the
output pixel.

Degeneracy property of logic functions means that a function of some N variables actually
depends on some fewer variables. Degeneracy is useful because it helps to reduce the amount
of data to be stored—there should be stored only those variables the function actually depends
on, which can be a significant difference.

However, in the case of image transforming Boolean functions there is no room for degen-
eracy. Each variable of a function support corresponds to some point in a processing window.
If the function was vacuous in any of the variables, it would mean that the point the variable
corresponds to should not be contained in the processing window in the first place, since the
sole change of its value never causes the function to change as well. Thus a properly defined
processing window ensures the function to be non-degenerate, and instead of testing the function
for this property it is better to check whether the window contains only essential points.

Functional values in symmetric functions depend only on the number of variables equal zero
or one, no matter which variables are equal zero and which are equal one. Totally symmetric
functions are encountered less frequently than partially symmetric functions, in which only in
some subset of variables a function is symmetric.

Function symmetry in image processing can cause misunderstanding with the geometrical
symmetry that is often encountered, the two of which, significantly different, use the same name
of property but in two different fields. Thus it is necessary to consider a function symmetry by
detailed analysis of the definition. For a symmetric function the output depends only on the
number of ones and zeros and not their distributions among variables. In image processing there
is a group of operations with such approach to pixels in the processing window and they are
rank order operators [3]. They are described by logic threshold functions among which there
can be named special cases of minorative, majorative and median functions. These functions are
totally symmetric and their symmetry comes from the image transformation definition, which



means that once again instead of testing the function for symmetry more efficient approach is
to analyse the transformation and since such analysis is necessarily performed at the synthesis
of a logic function stage, at this very stage the symmetry property for the function is known.

In the context of image processing monotonicity is an important concept, especially when
it is limited to increasing transformations. Increasing operations maintain containment relation-
ships in processed images. If a transformation is increasing, the logic function expressing it also
possesses this property. From morphological transformations these that are not increasing are
Hit-or-Miss Transformations and all those using them as building blocks. Increasing logic func-
tions have so-called stacking property and they are used to describe stack operators, the special
case of which constitute rank order operators, among which there are median operators.

Monotone functions constitute a class of functions that is closed under superposition, which
is verified by transformations defined with such functions. For example, dilation and erosion
operations are increasing. Performing first erosion, then dilation of the erosion result should
also maintain containment relationships, that is it should be increasing and it really is, because
opening transformation, which corresponds to such superposition of dilation and erosion, is
increasing. In the same way closing, which also is a superposition of dilation and erosion, is
increasing. Superposition of openings gives an opening, superposition of closings gives a closing,
necessarily preserving monotonicinity of operations.

Increasing logic functions are characterised by the unique sum of products form in which
none of variables is complemented, which is why they are often called positive functions.

The class of monotone functions can be enlarged by considering functions that are monotone
increasing for some subset of variables and monotone decreasing for the rest. Such functions are
called mixed monotone or unate if partition of a support set is non-trivial and disjoint. To
this class belongs a logic function expressing Hit-or-Miss transformation and the partition of
variables is provided by the definition of its composite structuring element, whose constituent
two sub-elements must be necessarily disjoint thus partitioning the processing window pixels
corresponding to function variables.

Testing monotonicity can relay on the definition of this property, that is checking whether
there is preserved partial ordering in the functional value corresponding to ordered strings of
variables values. Exhaustive tests obviously are time-consuming and to avoid that there can
be introduced some limitation, for example to local tests verifying whether monotonicity is
maintained for randomly chosen pairs of strings that are logically adjacent. Another option is
to obtain minimal sum of product form of the function and check for complementations on
variables. If none of them is complemented, the function is positive and by that monotone
increasing. If all variables are complemented the function is monotone decreasing and if there
exists a disjoint and non-trivial partition of variables into two subsets, the variables in one subset
being uncomplemented and the variables in the second complemented, the function is unate.

Decomposability property of logic functions is very useful in their implementations, since,
if existing, it allows for producing the functional value with lowered realisation costs through
construction of some number of simpler sub-functions. Testing for decomposability in fact corre-
sponds to some attempts to find non-trivial decompositions for a given function with respect to
some choices of variables. Thus the process of analysis of functional properties for some function
becomes the process of simplification of this function.

References
[1] R. M. Haralick, S. R. Sternberg, X. H. Zhuang, Image analysis using Mathematical Morphology, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 9, No. 4, July 1987.
[2] H. J. A. M. Heijmans, Mathematical Morphology: a modern approach in image processing based on algebra
and geometry, STAM Review 37, No. 1, March 1995.
[3] W. K. Pratt, Digital Image Processing, John Wiley & Sons, Inc., New York 1991.



