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Convergence of Feller semigroups
with applications to some stochastic genetic models

We study convergence of semigroups related to a singular-singularly perturbed
abstract Cauchy problem (compare [1] and [2]), generalizing a number of recent
models of mathematical biology, including the models of gene expression [2, 3, 5]
and gene regulation [4]. Particular attention is paid to irregular convergence of
these semigroups, i.e. convergence outside of hydrodynamic or regular space, where
convergence follows by the Trotter-Kato theorem.

Given v,w € RM M € N we define a compact set J = {z € RM : v <z < w}.
For fixed N € N we consider a stochastic process { X (¢),t > 0}, which heuristically
can be described as follows. X (t) jumps between N + 1 copies of J according
to a Markov chain-type mechanism. Between jumps, the process moves along the
integral curves of ODEs, different on each copy of J. We investigate asymptotic
behavior of X (t) when jump intensities are large.

At the time ¢, let x(t) denote the position of X(¢) in J and let 7(¢) indi-
cate which copy of J the process moves on. X (t) = (x(¢),v(t)) is an example
of a piecewise deterministic Markov process of M.H.A. Davis. Consider a sequen-
ce (X (t))n>0 of such processes. Their conditional expected values are given by
f.(z,t) == Eqg, ~, 50 (%0 (t), 0 (t)), where (z,,7v,) = (5(0),7,(0)). If £,(x,t) are
smooth enough (e.g. are of class C'!), they satisfy the Cauchy problems

of, (x,t

% = Aof, (z,t) + Kk, Qnf(x, 1), £,(z,0) =0,(z), n €N, (1)
where for fixed n, t, f, belongs to a Cartesian product B of N 4+ 1 copies of
C = C(J), the space of real-valued continuous functions on the set J, equip-

ped with the supremum norm. The operator Ay with domain D is an infinitesimal
generator of a ¢y semigroup of contractions, describing deterministic movement of
the processes along integral curves of ODEs. Q,, is a sequence of bounded multipli-
cation operators in B, whose entries are continuous functions on J. For x € J, each
Q. () is the intensity matrix of a Markov chain, governing jumps of X,,(t). K, is
a sequence of non-negative constants such that x,, — oo for n — oo, describing
intensity of jumps. We prove a theorem about convergence of semigroups related
to (1) for n — oo, assuming that Q,, tend in operator norm to a limit operator
Q. Assuming that Q(x) has the stationary distribution po(z) and that py are Lip-
schitz continuous functions of x, we prove that the solutions of (1) tend to these
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This result can be applied to derivation of deterministic approximations of the
stochastic Kepler-Elston model of gene regulation ([4]), describing binding of regu-
latory proteins to regulatory sequence in the gene. Similar deterministic approxi-
mation of a stochastic mechanism is used in the Lipniacki model of gene expression
([2,3,5]), where random activation or inactivation of a gene stimulates production
of mRNA and proteins.

References

[1] J. Banasiak, A. Bobrowski, Interplay between degenerate convergence of semigroups and
asymptotic analysis: a study of a singularly perturbed abstract telegraph system, J. Evol. Equ.
9 (2009), 293-314.

[2] A. Bobrowski, Degenerate convergence of semigroups related to a model of stochastic gene
expression, Semigroup Forum 73 (2006), 345-366, with correction in 77 (2008), 520-521.

[3] A. Bobrowski, T. Lipniacki, K. Pichér, R. Rudnicki, Asymptotic behaviour of distributions of
mRNA and protein levels in a model of stochastic gene expression, J. Math. Anal. Appl. 333
(2007), 753-769.

[4] T. B. Kepler, T. C. Elston, Stochasticity in transcriptional regulation: origins, consequences,
and mathematical representations, Biophysical J. 81 (2001), 3116-3136.

[5] T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A. R. Brasier, M. Kimmel, Transcriptional
stochasticity in gene expression, J. Theor. Biol. 238 (2006), 348-367.



