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The Borsuk-Ulam theorem

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If f : Sn → Rn is continuous,
then there exists a pair (p,−p) of antipodal points on Sn such
that f(p) = f(−p).

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn−1 ∗ Z/2Z→ Sn−1.
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Classical generalization

A classical Borsuk-Ulam-type conjecture (Baum, D ↪abrowski, H.)

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X ∗G, there does not exist a
G-equivariant continuous map f : X ∗G→ X.

Proven by A. Chirvasitu and B. Passer on 7 April 2016.

Corollary

There does not exist a G-equivariant continuous map
f : X ∗G→ G.

For X = G this means that G is not contractible.
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The Hilbert-Smith conjecture

Hilbert’s fifth problem (Yamabe)

If a connected locally compact Hausdorff topological group G is a
projective limit of a sequence of Lie groups, and if there is an open
neighbourhood U of the neutral element e containing no subgroup
bigger than {e}, then G is a Lie group.

The Hilbert-Smith conjecture

If G is a locally compact Hausdorff topological group acting
effectively and continuously on a topological manifold M , then G
is a Lie group.

The classical Borsuk-Ulam-type theorem implies:

A weak Hilbert-Smith conjecture (D ↪abrowski, Chirvasitu, Tobolski)

If G is a compact Hausdorff topological group acting freely and
continuously on a topological manifold M , so that the orbit space
M/G is finite dimensional, then G is a Lie group.
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Associated-vector-bundle theorem

Theorem

Let G be a compact connected semisimple Lie group. Then, there
exists a finite-dimensional representation V of G such that for any
compact Hausdorff space X equipped with a free G-action, the
associated vector bundle

(X ∗G)
G
× V

is not stably trivial.

Note that this theorem implies the second corollary. To prove the
theorem, we first show it for X = G. The general case follows by
pulling back a special-case vector bundle with respect to the map
between quotients induced by a G-equivariant map G∗G→ X ∗G.
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Pointed noncommutative Borsuk-Ulam theorem

Theorem (main)

Let A be a unital C*-algebra with a free action δ : A→ A⊗min H
of a non-trivial compact quantum group (H,∆), and let A~δ H
be the equivariant noncommutative join C*-algebra of A and H
with the induced free action of (H,∆). Then, if H admits a
character that is not convolution idempotent,

6 ∃ an H-equivariant ∗-homomorphism A −→ A~δ H .

Furthermore, if A admits a character, then

6 ∃ an H-equivariant ∗-homomorphism H −→ A~δ H .

This theorem is a straightforward consequence of its special case
given by commutative H, and proven by A. Chirvasitu and
B. Passer. Now the challange is to remove the red assumption and
thus prove the original conjecture of P. F. Baum, L. D ↪abrowski and
P. M. H.
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Noncommutative Brouwer fixed-point theorem

The join of any space with one point is its cone. The cone of a
unital C*-algebra A is CA := A~ C. Evaluation at 1 yields a
*-homomorphism ev1 : CA→ A.

Let δ : A→ A⊗min H be a free action of a compact quantum
group (H,∆), and let A~δ H be the equivariant noncommutative
join C*-algebra of A and H with the induced free action
of (H,∆). Then, if H admits a character, the following
statements are equivalent:

1 6 ∃ an H-equivariant ∗-homomorphism A→ A~δ H,
2 6 ∃ a ∗-homomorphism γ : A→ CA such that ev1 ◦ γ : A→ A

is H-colinear.

Corollary (A noncommutative fixed-point theorem)

If A is a unital C*-algebra admitting a free action of a compact
quantum group (H,∆) such that there exists a character on H
that is not convolution idempotent, then there does not exist a
∗-homomorphism γ : A→ CA such that ev1 ◦ γ = idA.
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Deformation theorem

Theorem

Let G be a compact connected semisimple Lie group. Let
(C(Gq),∆q), q > 0, be a family of compact quantum groups that
is a q-deformation of (C(G),∆). Then, for any q > 0 there exists
a finite-dimensional left O(Gq)-comodule Vq such that for any
unital C*-algebra A admitting a character and equipped with a
free action of (C(Gq),∆q), the associated finitely generated
projective left (A~δ C(Gq))

coC(Gq)-module

PC(Gq)

(
A~

δ
C(Gq)

)
�Vq

is not stably free.

As in the classical case, we first prove it for A = C(Gq), and use a
character on A to construct an H-equivariant *-homomorphism
A~ C(Gq)→ C(Gq)~ C(Gq). Then we apply the
noncommutative pulling-back theorem (H. and Maszczyk).
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Geometry, Representation Theory and the Baum-Connes Conjecture
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