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Free actions of compact quantum groups
Let A be a unital C∗-algebra and δ : A→ A⊗min H an injective
unital ∗-homomorphism. We call δ a coaction of H on A (or an
action of the compact quantum group (H,∆) on A) if

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),
2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A ⊗

min
H (counitality).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .

Given a compact quantum group (H,∆), we denote by O(H) its
dense Hopf ∗-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is PH(A) := { a ∈ A | δ(a) ∈ A⊗alg O(H) }.
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The Peter-Weyl-Galois Theorem
Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,∆). The following conditions are equivalent:

1 The action is free.
2 The action satisfies the Peter-Weyl-Galois condition.
3 The action is strongly monoidal.

Put B = AcoH := {a ∈ A | δ(a) = a⊗ 1} (coaction-invariants).

The Peter-Weyl-Galois condition
is the bijectivity of the canonical map
PH(A)⊗B PH(A) 3 x⊗ y can7−→ (x⊗ 1)δ(y) ∈ PH(A)⊗alg O(H).

Let V and W be O(H)-comodules (representations of (H,∆)).

The strong monoidality
is the bijectivity of the natural map
(PH(A)�V )⊗B (PH(A)�W ) −→ PH(A)�(V ⊗algW ).
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Main result

Theorem
Let (H,∆) be a compact quantum group, A and A′

(H,∆)-C*-algebras, B and B′ the corresponding fixed-point
subalgebras, and f : A→ A′ an equivariant *-homomorphism.
Then, if the action of (H,∆) on A is free and V is a representation
of (H,∆), the following left B′-modules are isomorphic

B′f ⊗
B

(
PH(A)�V

) ∼= PH(A′)�V .

Here B′f stands for the B′-B-bimodule with the right action given
by f , i.e. b · c = bf(c).

Corollary

The induced map (f |B)∗ : K0(B)→ K0(B′) satisfies

(f |B)∗
(
[PH(A)�V ]

)
= [PH(A′)�V ] .
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18–22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY
AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th
birthday organized by Alan Carey, George Elliott, Piotr M. Hajac,
and Ryszard Nest.

Sponsored by:
The Fields Institute, University of Toronto, Canada
The Pennsylvania State University, USA
National Science Foundation, USA
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Equivariant join construction
For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X ∗G is again continuous and free. In particular, for the
antipodal action of Z/2Z on Sn−1, we obtain a Z/2Z-equivariant
identification Sn ∼= Sn−1 ∗ Z/2Z for the antipodal and diagonal
actions respectively.
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Gauged equivariant join construction
If Y = G, we can construct the join G-space X ∗ Y in a different
manner: at 0 we collapse X ×G to G as before, and at 1 we
collapse X ×G to (X ×G)/RD instead of X. Here RD is the
equivalence relation generated by

(x, h) ∼ (x′, h′), where xh = x′h′ .

More precisely, let R′J be the equivalence relation on I ×X ×G
generated by

(0, x, h) ∼ (0, x′, h) and (1, x, h) ∼ (1, x′, h′), where xh = x′h′.

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right
G-action on (I ×X ×G)/R′J , and the formula

X ∗G 3 [(t, x, h)] 7−→ [(t, xh−1, h)] ∈ (I ×X ×G)/R′J

yields a G-equivariant homeomorphism.
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Equivariant noncommutative join
construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the unital
C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H

∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center
NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION
Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior
Professors, Postdocs, or PhD Students).
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Noncommutative Geometry the Next Generation

4–17 September, Będlewo & Warsaw, Master Class on:
Noncommutative geometry and quantum groups

1 Cyclic homology
by Masoud Khalkhali and Ryszard Nest

2 Noncommutative index theory
by Nigel Higson and Erik Van Erp

3 Topological quantum groups and Hopf algebras
by Alfons Van Daele and Stanisław L. Woronowicz

4 Structure and classification of C*-algebras
by Stuart White and Joachim Zacharias

19 September – 14 October, 20-hour lecture courses:
1 An invitation to C*-algebras by K. R. Strung
2 An introduction to quantum symmetries by R. Ó Buachalla
3 Noncommutative topology for beginners by T. Shulman
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Conferences

1 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

2 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

3 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski

4 21–25 Nov. Structure and classification of C*-algebras
G. Elliott, K. R. Strung, W. Winter, J. Zacharias
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Iterated joins of the quantum SU(2) group
Consider the n-th iteration:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3.

With the diagonal SU(2)-action, we obtain

S4n+3/SU(2) = HPn.

To obtain a q-deformation of this fibration, we take H := C(SUq(2))
and A := C(S4n+3

q ) equal to the n-times iterated equivariant join
of H. We view the fixed-point subalgebra C(S4n+3

q )SUq(2) as the
defining C*-algebra C(HPnq ) of a quantum quaternionic projective
space.

Then we define the noncommutative tautological quaternionic line
bundle and its dual as noncommutative complex vector bundles
associated through the contragredient representation V ∨f of the
fundamental represention of SUq(2) and the fundamental
represention Vf itself, respectively.
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Quantum quaternionic line bundles

Theorem

For any n ∈ N \ {0} and 0 < q ≤ 1, the noncommutative
tautological quaternionic line bundle and its dual are not stably
trivial as noncommutative complex vector bundles, i.e., the finitely
generated projective left C(HPnq )-modules PSUq(2)(S

4n+3
q )�V ∨f

and PSUq(2)(S
4n+3
q )�Vf are not stably free.

Proof outline: There exists an SUq(2)-equivariant *-homomorphism
C(S4n+3

q )→ C(SUq(2))~∆C(SUq(2)) =: C(S7
q ). Hence, by the

main theorem, it suffices to prove that the left C(HP1
q)-modules

PSUq(2)(S
7
q )�V ∨f and PSUq(2)(S

7
q )�Vf are not stably free.

Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely-generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V . If
H := C(SUq(2)) and V is V ∨f or Vf , then (H~∆H)�HV is not
stably free by the non-vanishing of an index paring of U . �
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Quantum quaternionic principal bundles

Let (H,∆) be a compact quantum group acting freely on a unital
C*-algebra A. It follows from Hopf-Galois theory that, if there
exists an H-equivariant *-homomorphism H → A, then the
associated AcoH -module PH(A)�V is free for any left
O(H)-comodule V .

Consequently, the quantum principal SUq(2)-bundle S4n+3
q → HPnq

is not trivializable:

Corollary

There does not exist a C(SUq(2))-equivariant *-homomorphism

f : C(SUq(2)) −→ C(S4n+3
q ).

14/15



Quantum quaternionic principal bundles

Let (H,∆) be a compact quantum group acting freely on a unital
C*-algebra A. It follows from Hopf-Galois theory that, if there
exists an H-equivariant *-homomorphism H → A, then the
associated AcoH -module PH(A)�V is free for any left
O(H)-comodule V .

Consequently, the quantum principal SUq(2)-bundle S4n+3
q → HPnq

is not trivializable:

Corollary

There does not exist a C(SUq(2))-equivariant *-homomorphism

f : C(SUq(2)) −→ C(S4n+3
q ).

14/15



Quantum Dynamics, 2016–2019
Research and Innovation Staff Exchange network of:
IMPAN (Poland), University of Warsaw (Poland), University of
Łódź (Poland), University of Glasgow (G. Britain), University of
Aberdeen (G. Britain), University of Copenhagen (Denmark),
University of Münster (Germany), Free University of Brussels
(Belgium), SISSA (Italy), Penn State University (USA), University
of Colorado at Boulder (USA), University of Kansas at Lawrence
(USA), University of California at Berkeley (USA), University of
Denver (USA), Fields Institute (Canada), University of New
Brunswick at Fredericton (Canada), University of Wollongong
(Australia), Australian National University (Australia), University of
Otago (New Zealand), University Michoacana de San Nicolás de
Hidalgo (Mexico).

15/15


