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Odd-to-even connecting homomorphism

For any one-surjective pullback diagram of algebras

A1

π1 '' ''

Aoo // A2

π2ww
A12

,

there exists the following long exact sequence in algebraic K-theory:

· · · −→ Kalg
1 (A12)

∂alg10−→ K0(A) −→ K0(A1 ⊕A2) −→ K0(A12)

given by the construction: GL∞(A12) 3 U 7−→M ∈ Proj(A),

An1

(π1,··· ,π1)
'' ''

Moo // An2

(π2,··· ,π2)
ww

An12
U∼= An12

.
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Milnor idempotent

Take an invertible matrix U ∈ GLn(A12) representing a class in
Kalg

1 (A12). There exist liftings c, d ∈Mn(A1) such that
(π1 ⊗ id)(c) = U−1 and (π1 ⊗ id)(d) = U . Then

pU :=

(
(c(2− dc)d, 1) (c(2− dc)(1− dc), 0)
((1− dc)d, 0) ((1− dc)2, 0)

)
∈M2n(A) .

is an idempotent matrix such that M ∼= A2npU .

The assignment

∂alg10 : Kalg
1 (A12) 3 [U ]alg 7−→ [pU ]− [In] ∈ K0(A) ,

where In is the identity matrix of the same size as the matrix U ,
defines the odd-to-even connecting homomorphism.
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Mayer-Vietoris six-term exact sequence

For any one-surjective pullback diagram of unital C*-algebras

A1

π1 '' ''

Aoo // A2

π2ww
A12

,

there exists the following six-term exact sequence in K-theory:

K0(A) // K0(A1)⊕K0(A2)
π1
∗−π2

∗ // K0(A12)

��
K1(A12)

∂10 Higson’s argument

OO

K1(A1)⊕K1(A2)
π1
∗−π2

∗

oo K1(A).oo
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Milnor’s construction for C*-algebras

1 For any unital C*-algebra A12, there is a functorial surjection
Kalg

1 (A12)3 [U ]alg 7→ [U ]∈K1(A12), and K
alg
0 (A12) ∼= K0(A12).

2 Take a splitting s : K1(A12)→Kalg
1 (A12), and define

∂10 := ∂alg10 ◦ s .

3 Use the homotopy invariance of K-theory to prove that
∂alg10 ◦ (s− s′) = 0 for any splittings s and s′.

4 Use the commutativity of the diagram and the exactness of
the top row to conclude the exactness of the bottom row:

Kalg
1 (A1⊕A2) //

����

Kalg
1 (A12)

∂alg
10 //

����

K0(A) // K0(A1⊕A2)

K1(A1⊕A2) // K1(A12)
∂10 // K0(A) // K0(A1⊕A2).
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Heegaard quantum 3-sphere and lens spaces

Definition (P.F. Baum, P.M.H., R. Matthes, W. Szymański)

For 0 ≤ p, q, θ < 1, θ irrational, the C*-algebra algebra of the
Heegaard quantum sphere C(S3

pqθ) is the universal C*-algebra
generated by two elements a and b satisfying the relations

ab = ei2πθba, ab∗ = e−i2πθb∗a,

a∗a− paa∗ = 1− p, b∗b− qbb∗ = 1− q,
(1− aa∗)(1− bb∗) = 0.

C(S3
pqθ) is a U(1)-C*-algebra for the action α given by

αeiφ(a) := eiφa, αeiφ(b) := eiφb.

Definition (P.M.H., R. Matthes, W. Szymański)

We define the C*-algebra C(LNpqθ) of the N -th Heegaard quantum
lens space as the fixed-point subalgebra C(S3

pqθ)
Z/NZ for the action

α restricted to Z/NZ by the N -th roots of 1.
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Equivariant pullback presentation

Theorem (P.F. Baum, P.M.H., R. Matthes, W. Szymański)

Let T denote the Toeplitz algebra. The U(1)-C*-algebra C(S3
pqθ)

is isomorphic to the following pullback of U(1)-C∗-algebras with
the natural U(1)-action on the Z-parts:

C(S3
pqθ)

yy %%
T o

θ
Z

π1

��

T o
−θ

Z

π2

��

z+_

��

u+_

��

z−_

��

u−_

��

C(S1)o
θ
Z

Z+ U+ Z−1+ Z+U+ .
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Analogous equivariant pullback presentation

The C*-algebra C(LNpqθ) is isomorphic to the following pullback of
C∗-algebras:

C(LNpqθ)

yy &&
T o

Nθ
Z

π̃1

��

T o
−Nθ

Z

π̃2

��

z̃+_

��

ũ+_

��

z̃−_

��

ũ−_

��

C(S1) o
Nθ

Z

Z U Z−1 eiN(N−1)πθZNU .
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K-maps

K0(T o
Nθ

Z) ∼= Z 3 m π̃1
∗7−→ (m, 0) ∈ Z⊕ Z ∼= K0(C(S

1)o
Nθ

Z),

K0(T o
−Nθ

Z) ∼= Z 3 n π̃2
∗7−→ (n, 0) ∈ Z⊕ Z ∼= K0(C(S

1)o
Nθ

Z),

K1(T o
Nθ

Z) ∼= Z 3 m π̃1
∗7−→ (0,m) ∈ Z⊕ Z ∼= K1(C(S

1)o
Nθ

Z),

K1(T o
−Nθ

Z) ∼= Z 3 n π̃2
∗7−→ (Nn, n) ∈ Z⊕ Z ∼= K1(C(S

1)o
Nθ

Z).

Inserting these K-theory groups and maps into the Mayer-Vietoris
six-term exact sequence yields

K0(C(L
N
pqθ))

// Z⊕ Z
(m,n)→(m−n,0) // Z⊕ Z

��
Z⊕ Z

OO

Z⊕ Z
(−Nn,m−n)←(m,n)oo K1(C(L

N
pqθ)).

0oo
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K-groups

Thus we immediately obtain that K1(C(L
N
pqθ)) = Z. Furthermore,

we can simplify the six-term exact sequence to the exact sequence

0→ NZ⊕Z ↪→ Z⊕Z→ K0(C(L
N
pqθ))→ Z⊕Z

(m,n)7→m−n
−−−−−−−→ Z→ 0.

Consequently, the sequence

0→ NZ ↪→ Z f→ K0(C(L
N
pqθ))→ Z→ 0

is exact. Hence Imf = Z/NZ. On the other hand, since Z is
projective, K0(C(L

N
pqθ)) = Imf ⊕ Z. Summarising, we have

derived:

Theorem

K0(C(L
N
pqθ)) = Z/NZ⊕ Z and K1(C(L

N
pqθ)) = Z.
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Main result

Theorem

Let LN := {x ∈ C(S3
pqθ) | αe 2πi

N
(x) = e

2πi
N x} ⊂ C(S3

pqθ). Then

LN is not stably free as a left C(LNpqθ)-module.

Proof.
1 Find a strong connection. This proves the freeness of

the action of Z/NZ on S3
pqθ and yields a projection

representing LN .
2 Compute the Milnor idempotent.
3 Identify [LN ]− [1] as a torsion generator.
4 Use the projection homomorphism C(LNpqθ)→T oNθ Z and the

functoriality of K0 to exclude the possibility of LN being
stably free.
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Matching the idempotents

Chern-Galois: The C∗-algebra C(S3
pqθ) is isomorphic as a

U(1)-C∗-algebra to C(S3
00θ). The latter is generated by

isometries s and t with the U(1)-action given by
α̃eiφ(s) = eiφs, α̃eiφ(t) = eiφt. Restrict this action to Z/NZ,
and denote the unitary generator of C(Z/NZ) by eN .

Then
the formula

C(Z/NZ) 3 eN 7−→ s∗ ⊗ s ∈ C(S3
pqθ)⊗ C(S3

pqθ)

defines a strong connection. Applying Chern-Galois theory, we
conclude that ss∗ ∈ C(L3

pqθ(N)) is an idempotent (in fact, a
projection) representing the K0-class of LN .
Milnor: On the other hand, the torsion-part of K0(C(L

N
pqθ)) is

generated by the odd-to-even connecting homomorphism ∂10
applied to the K1-class of the unitary Z ∈ C(S1)oNθ Z. The
Milnor construction yields(

(1, 1) (0, 0)
(0, 0) (1− z̃+z̃∗+, 0)

)
=

(
1 0
0 1

)
−
(

0 0
0 (z̃+z̃

∗
+, 1)

)
.
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Deriving the concluding contradiction
Finally, using the pullback description of C(S3

00θ), we note that
ss∗ = (z̃+z̃

∗
+, 1). Thus it is clear that

∂10([Z]) = 2[1]− [LN ]− [1] = [1]− [LN ].

If LN were stably free, then there would exist k, m ∈ N such that
LN ⊕ C(LNpqθ)k ∼= C(LNpqθ)

m as modules. Then the foregoing
equation would imply

∂10([Z]) = [1] + k[1]− [LN ⊕ C(LNpqθ)k] = (k + 1−m)[1].

However, since ∂10([Z]) 6= 0, we conclude that k + 1−m 6= 0.
Therefore N(k + 1−m) 6= 0 and N(k + 1−m)[1] = 0. This
contradicts the fact that the projection map C(LNpqθ)→T oNθ Z
takes the identity to the identity inducing the map

K0(C(L
N
pqθ))3N(k+1−m)[1]7→N(k+1−m)[1o] 6=0∈K0(T o

Nθ
Z) = Z.

Hence LN is not stably free. �
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