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Odd-to-even connecting homomorphism

For any one-surjective pullback diagram of algebras

Al A A2 )

Aqp
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Odd-to-even connecting homomorphism

For any one-surjective pullback diagram of algebras

there exists the following long exact sequence in algebraic K-theory:

alg

a 0
C— Kllg(Alg) i> K()(A) — Ko(Al D Ag) — Ko(Alg)

given by the construction: G Ly (A12) > U — M € Proj(A),

\M/

g n
~/
A12 - A12
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Milnor idempotent

Take an invertible matrix U € GL,,(A;2) representing a class in
K™8(Ay5). There exist liftings ¢,d € M, (A;) such that
(7' ®id)(c) = U~! and (7! ®id)(d) = U. Then

_ [ (e(2=de)d, 1) (e(2 - de)(1 - dc), 0)
e ( ((1 = de)d, 0) ((1 - de)?,0) ) € M2u(A) |-

is an idempotent matrix such that M = A%"p;;.
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Milnor idempotent

Take an invertible matrix U € GL,,(A;2) representing a class in

K™8(Ay5). There exist liftings ¢,d € M, (A;) such that
(7' ®id)(c) = U~! and (7! ®id)(d) = U. Then

(1 —dc)d,0) (1 —dc)?,0)

— ( (c(2—dc)d,1) (c¢(2—dc)(1 —dc),0) ) € Mon(4)|.

is an idempotent matrix such that M = A?"p;;. The assignment

O K18 (Ar2) 3 [Ulag — [pu] — [In] € Ko(A)

)

where I, is the identity matrix of the same size as the matrix U,

defines the odd-to-even connecting homomorphism.
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Mayer-Vietoris six-term exact sequence

For any one-surjective pullback diagram of unital C*-algebras

Ay A Ay,

Ara
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Mayer-Vietoris six-term exact sequence

For any one-surjective pullback diagram of unital C*-algebras

Ay A Ag

Ara

there exists the following six-term exact sequence in K-theory:

ml—m2
Ko(A) Ko(A1) ® Ko(Az) Ko(A12)
aloTHigson’s argument l
Ki1(A12) S K1(A1) © K1(As) Ki(A).
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Milnor’s construction for C*-algebras

@ For any unital C*-algebra Ais, there is a functorial surjection
Kflg(Alg) > [U]alg — [U] EKl(A12), and Kglg(Alg) = K()(Alg).
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Milnor’s construction for C*-al

@ For any unital C*-algebra Ais, there is a functorial surjection
Kflg(Alg) > [U]alg — [U] EKl(A12), and Kglg(Alg) = Ko(Alg).

@ Take a splitting s: Kl(Alg)HKflg(Alg), and define

1
810 = 8?0g oS|.
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Milnor’s construction for C*-algebras

@ For any unital C*-algebra Ais, there is a functorial surjection
Kflg(Alg) > [U]alg — [U] EKl(A12), and Kglg(Alg) = K()(Alg).

@ Take a splitting s: Kl(Alg)HKflg(Alg), and define

1
810 = 82110g oS|.

© Use the homotopy invariance of K-theory to prove that
a?(l)g o (s — ') = 0 for any splittings s and s’
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Milnor’s construction for C*-al

@ For any unital C*-algebra Ais, there is a functorial surjection
Kflg(Am) =] [U]alg — [U] EKl(A12), and Kglg(Alg) = Ko(Alg).
@ Take a splitting s: Kl(Alg)HKflg(Alg), and define

1
810 = 8?0g oS|.

© Use the homotopy invariance of K-theory to prove that
528 o (s — ') = 0 for any splittings s and s'.

@ Use the commutativity of the diagram and the exactness of
the top row to conclude the exactness of the bottom row:

alg

a a 6
KY8(A1645) — K¥8(A5) —2 > Ko(A) — Ko(A & Ap)

| N

Kl(Al@AQ) Kl(Alg) Ko(A) *>K0(A1@A2).
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Heegaard quantum 3-sphere and lens spaces

Definition (P.F. Baum, P.M.H., R. Matthes, W. Szymanski)

For 0 < p,q,0 < 1, 0 irrational, the C*-algebra algebra of the

Heegaard quantum sphere C(que) is the universal C*-algebra

generated by two elements a and b satisfying the relations

ab = ei27r9ba’ ab* _ e*iQTl‘@b*a7
a*a —paa* =1—p, b'b—qgbb" =1-—q,
(I —aa™)(1—0bb%)=0.

C’(que) is a U(1)-C*-algebra for the action « given by

Qeio(a) :=€%a,  ags(b) = eb.
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Heegaard quantum 3-sphere and lens spaces

Definition (P.F. Baum, P.M.H., R. Matthes, W. Szymanski)

For 0 < p,q,0 < 1, 0 irrational, the C*-algebra algebra of the

Heegaard quantum sphere C’(S;’q(,) is the universal C*-algebra

generated by two elements a and b satisfying the relations

ab = 6i27r9ba’ ab* _ e*iQTl‘@b*a7
a*a —paa* =1—p, b'b—qgbb" =1-—q,
(I —aa™)(1—0bb%)=0.

C’(que) is a U(1)-C*-algebra for the action « given by

i (a) = e'a, Qo (b) == e'b.

Definition (P.M.H., R. Matthes, W. Szymanski)

We define the C*-algebra C(L[JXIG) of the N-th Heegaard quantum

lens space as the fixed-point subalgebra C(que)Z/NZ for the action
« restricted to Z/NZ by the N-th roots of 1.
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Equivariant pullback presentation

Theorem (P.F. Baum, P.M.H., R. Matthes, W. Szymanski)

Let T denote the Toeplitz algebra. The U(1)-C*-algebra C(S;’qe)
is isomorphic to the following pullback of U(1)-C*-algebras with
the natural U(1)-action on the Z-parts:

C’(Spq9

T/\

Z T >4 Z
7T1 71'2
24 U4 \ / zZ_ u—
C(SHYxZ

Z, Uy z7t Z,Uy .
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Analogous equivariant pullback presentation

The C*-algebra C(Lé\ge) is isomorphic to the following pullback of
C*-algebras:

N
C(Lyye)

N

TMZ T % Z
_N6

T \ / = i

c(s!
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ﬁ-l
KO(TJ?G Z)=2Z>m— (m,0)€EZPL KO(C(Sl)K;G 7),

7~r2
Ko(T >]<WZ) ~27Z3n+—> (n,0)€ZDL KO(C(Sl)]% Z),

7'-]-1
Kl(TK;G Z)=2Z>m—> (0,m) €EZDL Kl(C’(Sl)ng 7),

77r2
K(T >]<WZ) ~7Z3n+—> (Nn,n) €Z® L Kl(C(Sl)K[«e 7).
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ﬁ-l
Ko(T % Z) = 7Z > m s (m,0) € Z® 7L KO(C(Sl)]?G Z),
N6

7~r2
Ko(T E@Z) ~27Z3n+—> (n,0)€ZDL KO(C(Sl)]% Z),

ﬁ'l
Ki(TXZ)=Z>m+—s (0,m) € Z® 7L Kl(C’(Sl)K[ﬂH zZ),
N6
77r2
K(T % Z)=Z>n+> (Nn,n) €EZO L= Kl(C(Sl)K[«e 7).
—N6

Inserting these K-theory groups and maps into the Mayer-Vietoris
six-term exact sequence yields

(m,n)—(m—n,0)

Ko(C(L)lg)) 720 ——""—"579L
T —Nnm—n m,n
7617 Ny gm0 K(O(EY,)).
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Thus we immediately obtain that Kl(C(Lfg\gg)) = Z. Furthermore,
we can simplify the six-term exact sequence to the exact sequence

(m,n)—m—n

0= NZOZ — Z&Z — Ko(C(Lpig)) = ZOLZ ———— Z — 0.
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Thus we immediately obtain that Kl(C(Lfg\gg)) = Z. Furthermore,
we can simplify the six-term exact sequence to the exact sequence

(m,n)—m—n

0= NZOZ — Z&Z — Ko(C(Lpig)) = ZOLZ ———— Z — 0.

Consequently, the sequence

0= NZ = Z 5 Ko(C(LNg) = Z — 0

is exact. Hence Imf = Z/NZ. On the other hand, since Z is

projective, Ko(C(L]y)) = Imf @ Z.
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Thus we immediately obtain that Kl(C(Lfg\gg)) = Z. Furthermore,
we can simplify the six-term exact sequence to the exact sequence

(m,n)—m—n

0= NZOZ — Z&Z — Ko(C(Lpig)) = ZOLZ ———— Z — 0.

Consequently, the sequence

0= NZ = Z 5 Ko(C(LNg) = Z — 0

is exact. Hence Imf = Z/NZ. On the other hand, since Z is
projective, KO(C(L;])\;@)) = Imf @& Z. Summarising, we have
derived:

Ko(C(Ly

) =Z/NZ®Z and K1(C(LY,)) = Z.
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Main result

)| @ 20 (z) = eV 2} C C(S3

pql eN pqb
Ly is not stably free as a left (Lé\ga)—modu/e.

Let Ly :={z € C(S3 ). Then
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Main result

Let Ly = {z € C(S39) | o 25i (z) = e} C O(S3,). Then
Ly is not stably free as a /eft C( év )-module.

| A

Proof
@ Find a strong connection. This proves the freeness of
the action of Z/NZ on 53 0 and yields a projection
representing L.
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Main result

Let Ly i={z € C(S%y) | @ 25 ( e} C O(S3,). Then

) =
Ly is not stably free as a /eft C( év )-module.

| A

Proof
@ Find a strong connection. This proves the freeness of
the action of Z/NZ on 53 0 and yields a projection
representing L.

@® Compute the Milnor idempotent.
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Main result

Let Ly :={x € C(Ssqe) | o zm( )=e 5a x} C C(S;’qe). Then
Ly is not stably free as a /eft C( 11?\/ )-module.

Proof

@ Find a strong connection. This proves the freeness of
the action of Z/NZ on 53 0 and yields a projection
representing L.

| A

@® Compute the Milnor idempotent.
© lIdentify [Ly] — [1] as a torsion generator.
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Main result

Let Ly :={x € C(Ssqe) | o zm( e~ x} C C(S;’qe). Then
Ly is not stably free as a /eft C(Lyyp)-module.

) =
N

| \

Proof

@ Find a strong connection. This proves the freeness of
the action of Z/NZ on 53 0 and yields a projection
representing L.

@® Compute the Milnor idempotent.

© lIdentify [Ly] — [1] as a torsion generator.

@ Use the projection homomorphism C(LZ],\;@)—>T X no Z and the
functoriality of K to exclude the possibility of Ly being
stably free.
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Matching the idempotents

@ Chern-Galois: The C*-algebra C’(S;’qe) is isomorphic as a
U(1)-C*-algebra to C(Sg,,). The latter is generated by
isometries s and ¢ with the U(1)-action given by
Agis(8) = €95, G0 (t) = €'t. Restrict this action to Z/NZ,
and denote the unitary generator of C(Z/NZ) by en.
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Matching the idempotents

@ Chern-Galois: The C*-algebra C’(S;’qe) is isomorphic as a
U(1)-C*-algebra to C(Sg,,). The latter is generated by
isometries s and ¢ with the U(1)-action given by
Agis(8) = €95, G0 (t) = €'t. Restrict this action to Z/NZ,
and denote the unitary generator of C(Z/NZ) by exn. Then
the formula

C(Z/NZ)>en — s*®@s € C’(S;’qg) ® C(S;’qe)

defines a strong connection. Applying Chern-Galois theory, we
conclude that ss* € C(Lf;qe(N)) is an idempotent (in fact, a
projection) representing the Ky-class of L.
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Matching the idempotents

@ Chern-Galois: The C*-algebra C’(S;’qe) is isomorphic as a
U(1)-C*-algebra to C(Sg,,). The latter is generated by
isometries s and ¢ with the U(1)-action given by
Agis(8) = €95, G0 (t) = €'t. Restrict this action to Z/NZ,
and denote the unitary generator of C(Z/NZ) by exn. Then
the formula

C(Z/NZ)>en — s*®@s € C(qug) ® C(S;’qe)

defines a strong connection. Applying Chern-Galois theory, we
conclude that ss* € C’(Lf;qe(N)) is an idempotent (in fact, a
projection) representing the Ky-class of L.

@ Milnor: On the other hand, the torsion-part of KO(C(LIJXIB)) is
generated by the odd-to-even connecting homomorphism 0;¢
applied to the Ki-class of the unitary Z € C(S') x 9 Z. The
Milnor construction yields

(Eéiéi (1—(20%70)):((1) ?>‘<8 <2+20i71>>'
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Deriving the concluding contradiction

Finally, using the pullback description of C/(S3),), we note that
ss* = (Z42%,1). Thus it is clear that

d0([2]) = 2[1] = [Ln] = [1] = [1] = [Ln].
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Deriving the concluding contradiction

Finally, using the pullback description of C/(S3),), we note that
ss* = (Z42%,1). Thus it is clear that

d0([2]) = 2[1] = [Ln] = [1] = [1] = [Ln].

If Ly were stably free, then there would exist k, m € N such that
Ly ® C(Lé\;g)k = C(Lé\ge)m as modules. Then the foregoing
equation would imply

010([2]) = [1] + k(1] = [Ly © C(Lpg)*] = (k + 1 —m)[1].

However, since 010([Z]) # 0, we conclude that £ + 1 —m # 0.
Therefore N(k+1—m) # 0 and N(k+1—m)[1] = 0.
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Deriving the concluding contradiction

FmaIIy using the pullback description of C/(S3,,), we note that
ss* = (Z42%,1). Thus it is clear that

d0([2]) = 2[1] = [Ln] = [1] = [1] = [Ln].

If Ly were stably free, then there would exist k, m € N such that
Ly ® C(Lé\;g)k = C(Lé\fﬁ)m as modules. Then the foregoing
equation would imply

010([2]) = [1] + k(1] = [Ly © C(Lpg)*] = (k + 1 —m)[1].

However, since 010([Z]) # 0, we conclude that £ + 1 —m # 0.
Therefore N(k+1—m) # 0 and N(k+1—m)[1] = 0. This
contradicts the fact that the projection map C( pqe)—ﬂ' X No L
takes the identity to the identity inducing the map

Ko(C(LY ))9N(k:+1—m)[1]»—>N(k¢+1—m)[1x];«AOEKO(TK]«QZ) =7Z.

pql

Hence Ly is not stably free. [
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