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The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If f : Sn → Rn is continuous,
then there exists a pair (p,−p) of antipodal points on Sn such
that f(p) = f(−p).

The logical negation of the theorem

There exists a continuous map f : Sn → Rn such that for all pairs
(p,−p) of antipodal points on Sn we have f(p) 6= f(−p).

Equivalent negation

There exists a Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.
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Equivariant join construction

For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X ∗G is again continuous and free. In particular, for the
antipodal action of Z/2Z on Sn−1, we obtain a Z/2Z-equivariant
identification Sn ∼= Sn−1 ∗ Z/2Z for the antipodal and diagonal
actions respectively.
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Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn−1 ∗ Z/2Z→ Sn−1.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X ∗G, there does not exist a
G-equivariant continuous map f : X ∗G→ X.

At the moment, the conjecture is known to hold under the
assumption of local triviality. Without this assumption, it implies a
version of the Hilbert-Smith conjecture.
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Tentative plan of conferences

New Geometry of Quantum Dynamics planned conferences:

The Banach Center, Warsaw, 15 January – 19 January 2018
(approved and funded)

The Fields Institute, Toronto, 22 July – 16 August 2019
(pending approval)
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What is a compact quantum space?
Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the
algebra of all continuous complex-valued vanishing-at-infinity
functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded)
linear operators on a complex Hilbert space that is:

1 a topologically closed set in the norm topology of operators,
2 closed under the operation of taking adjoints of operators.

Copernican-style revolution

Given a compact Hausdorff space of points, we can define the
C*-algebra of functions on the space, but the central concept is
that of a commutative C*-algebras, and points appear as
characters (algebra homomorphisms into C) rather than as primary
objects. We think of noncommutative unital C*-algebras as
algebras of functions on compact quantum spaces.
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What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C∗-algebra H with a given
unital ∗-homorphism ∆: H −→ H⊗minH such that the diagram

H
∆ //

∆
��

H ⊗
min
H

∆⊗id
��

H ⊗
min
H

id⊗∆
// H ⊗

min
H⊗

min
H

commutes and the two-sided cancellation property holds:

{(a⊗1)∆(b) | a, b ∈ H}cls = H ⊗
min

H = {∆(a)(1⊗b) | a, b ∈ H}cls.

Here “cls” stands for “closed linear span”.
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Free actions of compact quantum groups

Let A be a unital C∗-algebra and δ : A→ A⊗min H a unital
∗-homomorphism. We call δ a coaction (or an action of the
compact quantum group (H,∆) on A) iff

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),

2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A⊗min H (counitality),

3 ker δ = 0 (injectivity).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .
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Equivariant noncommutative join construction

Definition (L. D ↪abrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H
∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Noncommutative Borsuk-Ulam-type conjectures
Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,∆). Then there does not exist an
H-equivariant *-homomorphism A→ A~δ H. (Known to hold
for (H,∆) with classical torsion.)

Conjecture 2

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,∆). If A admits a character, then
there does not exist an H-equivariant *-homomorphism
H → A~δ H. (Follows from Conjecture 1.)

Classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and
H = C(G), then Conjecture 2 states that the principal G-bundle
X ∗G is not trivializable unless G is trivial. This is clearly true
because otherwise G ∗G would be trivializable, which is
tantamount to G being contractible, and the only contractible
compact Hausdorff group is the trivial one.
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Iterated joins of the quantum SU(2) group

Consider the fibration defining the quaternionic projective space:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3, S4n+3/SU(2) = HPn.

To obtain a q-deformation of this fibration, we take H := C(SUq(2))
and A := C(S4n+3

q ) equal to the n-times iterated equivariant join of H.
The thus given quantum principal SUq(2)-bundle is not trivializable:

Theorem

There does not exist a C(SUq(2))-equivariant *-homomorphism

f : C(SUq(2)) −→ C(S4n+3
q )~δ C(SUq(2)).

This theorem holds because SUq(2) has classical torsion elements.
It also follows from the stable non-triviality of the dual tautological
quaternionic line bundle:
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The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F

C(SUq(2))→ C(S4n+3
q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).

Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V ,
and an even index pairing calculation for pU−1 might be replaced
by an odd index pairing calculation for U .

Now, for H := C(SUq(2)) and V the fundamental representation
of SUq(2), the module (H~∆H)�HV is the section module of
the dual tautological quaternionic line bundle. It is not stably free
by the non-vanishing of an index paring of the fundamental
representation of SUq(2) with an appropriate odd Fredholm
module. This contradicts the existence of F .

14/14



The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F

C(SUq(2))→ C(S4n+3
q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).

Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V ,
and an even index pairing calculation for pU−1 might be replaced
by an odd index pairing calculation for U .

Now, for H := C(SUq(2)) and V the fundamental representation
of SUq(2), the module (H~∆H)�HV is the section module of
the dual tautological quaternionic line bundle. It is not stably free
by the non-vanishing of an index paring of the fundamental
representation of SUq(2) with an appropriate odd Fredholm
module. This contradicts the existence of F .

14/14



The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F

C(SUq(2))→ C(S4n+3
q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).

Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V ,
and an even index pairing calculation for pU−1 might be replaced
by an odd index pairing calculation for U .

Now, for H := C(SUq(2)) and V the fundamental representation
of SUq(2), the module (H~∆H)�HV is the section module of
the dual tautological quaternionic line bundle. It is not stably free
by the non-vanishing of an index paring of the fundamental
representation of SUq(2) with an appropriate odd Fredholm
module. This contradicts the existence of F .

14/14


