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Free actions of compact quantum groups

Let A be a unital C*-algebra and § : A — A ®uin H an injective
unital x-homomorphism. We call ¢ a coaction of H on A (or an
action of the compact quantum group (H,A) on A) if

O (®id)od = (id® A) o § (coassociativity),

@ {§(a)(1®h)|ac A, he H} = A ® H (counitality).

min
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Definition (D. A. Ellwood)

A coaction ¢ is called free iff

{z®1)d(y) |z,yc AA =4 @ H|.
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Given a compact quantum group (H, A), we denote by O(H) its
dense Hopf *-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of Ais Pu(A):={aec A|d(a) € A®as O(H) }.
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The Peter-Weyl-Galois Theorem

Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,A). The following conditions are equivalent:

@ The action is free.

@ The action satisfies the Peter-Weyl-Galois condition.

© The action is strongly monoidal.
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Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,A). The following conditions are equivalent:

@ The action is free.
@ The action satisfies the Peter-Weyl-Galois condition.

© The action is strongly monoidal.

Put B = A .= {a € A|d(a) = a® 1} (coaction-invariants).

The Peter-Weyl-Galois condition

is the bijectivity of the canonical map
Pr(A) ®p Pr(A) 222y "3 (z®1)é(y) € Pu(A) ®Ralg O(H).
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The Peter-Weyl-Galois Theorem

Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,A). The following conditions are equivalent:

@ The action is free.

@ The action satisfies the Peter-Weyl-Galois condition.

© The action is strongly monoidal.

Put B = A .= {a € A|d(a) = a® 1} (coaction-invariants).
The Peter-Weyl-Galois condition

is the bijectivity of the canonical map
Pr(A) ®p Pr(A) 222y "3 (z®1)é(y) € Pu(A) ®Ralg O(H).

Let V and W be O(H )-comodules (representations of (H,A)).

The strong monoidality

is the bijectivity of the natural map
(Pu(A)OV) ®p (Pu(A)OW) — Pu(A)OV @agW).
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Pulling Back Theorem

Theorem

Let (H,A) be a compact quantum group, A and A’
(H,A)-C*-algebras, B and B’ the corresponding fixed-point
subalgebras, and f : A — A’ an equivariant *-homomorphism.
Then, if the action of (H,A) on A is free and V' is a representation
of (H,A), the following left B'-modules are isomorphic

B ® (Pu(A)OV) = Py(AHOV .

Here B'; stands for the B'-B-bimodule with the right action given
by f,ie. b-c="bf(c).
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Pulling Back Theorem

Theorem

Let (H,A) be a compact quantum group, A and A’
(H,A)-C*-algebras, B and B’ the corresponding fixed-point
subalgebras, and f : A — A’ an equivariant *-homomorphism.
Then, if the action of (H,A) on A is free and V' is a representation
of (H,A), the following left B'-modules are isomorphic

B ® (Pu(A)OV) = Py(A)OV .

Here B'; stands for the B'-B-bimodule with the right action given
by f,ie. b-c="bf(c).

The induced map (f|g)« : Ko(B) — Ko(B') satisfies

(f18)«([Pa(A)DV]) = [Pu(A)OV]| .
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Strong connections

Let H be a Hopf algebra with bijective antipode S and P a right
H-comodule algebra for a coaction 6 : P — P ®a14 H. We view H
as an H-bicomodule via its comultiplication. We consider P ®,15 P
as an H-bicomodule via

id ®d right coaction,
((5—1 ®id) o flip o 5) ®id  left coaction.
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Definition

A strong connection is a unital bicolinear map £ : H — P ®a15 P
such that multiplicationo f = ¢.
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Strong connections

Let H be a Hopf algebra with bijective antipode S and P a right
H-comodule algebra for a coaction § : P — P ®,1; H. We view H
as an H-bicomodule via its comultiplication. We consider P ®,15 P
as an H-bicomodule via

id ®d right coaction,
((5—1 ®id) o flip o 5) ®id  left coaction.

Definition

A strong connection is a unital bicolinear map £ : H — P ®a15 P
such that multiplicationo f = ¢.

A\

Theorem (T. Brzezinski, P.M.H.)

Let B be the coaction-invariant subalgebra. The existence of a
strong connection is equivalent to the bijectivity of the canonical
map P ®5 P — P ®a1g H and the existence of a left B-linear right
‘H-colinear splitting of the multiplication map B P — P
(equivariant projectivity).

A\

5/13




The Chern-Galois proof

Note first that, since O(H) is cosemisimple, any comodule is a
direct sum of finite-dimensional comodules, so that it suffices to
prove the theorem for finite-dimesional representations of (H, A).
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The Chern-Galois proof

Note first that, since O(H) is cosemisimple, any comodule is a
direct sum of finite-dimensional comodules, so that it suffices to
prove the theorem for finite-dimesional representations of (H, A).

Furthermore, by the PWG Theorem and the cosemisimplicity
of O(H), there exists a strong connection

(:OH) — Pu(A) @ Pu(A)

on Py (A). Next, the equivariance of the *-homomorphism f
implies that ¢/ := (f ® f) o £ is a strong connection on Py (A’).
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The Chern-Galois proof

Now take advantage of Chern-Galois theory to show that applying
f componentwise to an idempotent matrix over B representing
Py (A)OV through ¢ is an idempotent matrix over B’ of the

following block form:
(€ 0
e={ _ 4/

Here ¢’ is an idempotent matrix representing Py (A") OV
through ¢'. It follows from e? = e that and re/ = r.
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The Chern-Galois proof

Now take advantage of Chern-Galois theory to show that applying
f componentwise to an idempotent matrix over B representing
Py (A)OV through ¢ is an idempotent matrix over B’ of the

following block form:
(€ 0
e={ _ 4/

Here ¢’ is an idempotent matrix representing Py (A") OV
through ¢'. It follows from e? = e that and re/ = r. Finally, the
computation

1 0 e 0 1 0\ (€ 0
—r 1 r 0 r 1) L0 0
shows that modules represented respectively by e and ¢’ are
isomorphic, i.e. B} ® (Pu(4)0V) = Py (AHOV. O
B
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The faithful-flatness proof

It follows from the first part of the preceding proof that the
canonical map

P(A) © Pu(A) 520y (@ ©1)8(y) € Pr(A') © O(H)

is bijective, and that P (A’) is faithfully flat over B’.
Consequently,

f=mp o (d® f): B} @ Pr(A) — Py (A)
is an isomorphism if and only if
148 (i (4)0(109.)) - Prr(A) 9 By&Pr () — Pr(A)@Pr(A)
is an isomorphism. It is the case if and only if

Mpy A @f: 7’H(f‘ll)f,P %A)PH(A)%PH(A) — PH(A')%?PH(A')
H

is an isomorphism.
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The faithful-flatness proof

Thus, from the commutativity of the diagram

mPH(AI)®f

Pu(A')f - %’A) Pr(A) @ Pr(d) = Pu(A) @ Pu(A)
H
l(mPH(A’)‘@id)o(id@C@n) Lcan’
Pr(A) © O(H) . Pr(A') © O(H)
alg alg

and the bijectivity of the canonical maps, we infer that fis an
isomorphism. Since it is equivariant, we conclude that

Ffoid: (B} ® PH(A))DV s P (ANOV
is an isomorphism of left B’-modules. Finally, as O(H) is

cosemisimple, and any comodule over a cosemisimple Hopf algebra
is coflat, it follows that

By (PH(A)DV> ~ Py (A)DV,

as desired. O
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Equivariant noncommutative join construction

Definition (L. Dabrowski, T. Hadfield, P. M. H.)
For any compact quantum group (H,A) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

)
A®H = {f € C([0,1,A) @ H| f(0) e C® H, f(1) € 5(A)}.

min

v
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Definition (L. Dabrowski, T. Hadfield, P. M. H.)
For any compact quantum group (H,A) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

)
A® H = {f € C([0,1,A) @ H| f(0) e C® H, f(1) € 5(A)}.

min

| A\

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

ideA: ¢([0,1,4) ® H — C([0,1,4) ® H® H

min min min

defines a free action of the compact quantum group (H,A) on the
equivariant join C*-algebra A®°H.

v
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Join Lemma

Lemma (Join Lemma)

Let (H,A) be a compact quantum group, A and A’
(H,A)-C*-algebras, and F : A — A’ an equivariant
*-homomorphism. Then there exists an equivariant
*_homomorphism f : A®® H — A'®® H. Furthermore, if the
C*-algebra H admits a character x, then one can take as A a
finitely iterated equivariant join of H with itself, and put A’ = H.

J
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v

Proof: Since *-homomorphism F'is equivariant,
the *-homomorphism
deo Feid: C([0,1]) ® A @ H—C([0,1]) ® A" @ H
min min min min
restricts and corestricts an equivariant *-homomorphism. Next,
evi®y®id: Ho®H — H
2

is an equivariant *-homomorphism. By induction, one can extend
the domain of this map to an arbitrary finitely iterated equivariant

join of H with itself.
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Milnor idempotent

Theorem (P. F. Baum, L. Dabrowski, P. M. H.)

For any finite-dimensional representation V' of a compact quantum
group (H,A), the associated finitely generated projective module
(H®~H)OyV is represented by a Milnor idempotent py;—1, where
U is a matrix of the representation V.
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Quantum quaternionic projective spaces

Consider the defining fibration of the quaternionic projective space:
SU(2) % ---x SU(2) = §4nF3 gint3 /517 (2) = HP".

To obtain a g-deformation of this fibration, we take H = C'(SU,(2))

and A equal to a finitely iterated equivariant join of H. The

quantum principal SU,(2)-bundle thus given is not trivializable:

There does not exist a C'(SU,4(2))-equivariant *-homomorphism
f: C(SU,(2)) = A®° C(SU,(2)) (Borsuk-Ulam).
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Quantum quaternionic projective spaces

Consider the defining fibration of the quaternionic projective space:
SU(2) % ---x SU(2) = §4nF3 gint3 /517 (2) = HP".

To obtain a g-deformation of this fibration, we take H = C'(SU,(2))

and A equal to a finitely iterated equivariant join of H. The

quantum principal SU,(2)-bundle thus given is not trivializable:

There does not exist a C'(SU,4(2))-equivariant *-homomorphism
f: C(SU,(2)) = A®° C(SU,(2)) (Borsuk-Ulam).

Proof outline: It suffices to show that there exists a
finite-dimensional representation V' of SU,(2) for which the
associated module is not free. As C(SU,(2)) admits characters,
the Join Lemma allows us to apply the Pulling Back Theorem
reducing the problem to proving that

(C(SU4(2))®>C(SU,(2))) Oc s, @)V

is not free. If V' is the fundamental representation of SU,(2), then
it follows from index paring considerations applied to the
associated Milnor idempotent py—1. O




