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Free actions of compact quantum groups

Let A be a unital C*-algebra and § : A — A ®uin H an injective
unital x-homomorphism. We call ¢ a coaction (or an action of the
compact quantum group (H,A) on A) if

QO (/®id)od = (id® A) o (coassociativity),

@ {6(a)(1®h)|ac A he H}" =A @ H (counitality).

min
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unital x-homomorphism. We call ¢ a coaction (or an action of the
compact quantum group (H,A) on A) if

QO (/®id)od = (id® A) o (coassociativity),

@ {6(a)(1®h)|ac A he H}" =A @ H (counitality).
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Definition (D. A. Ellwood)

A coaction ¢ is called free iff

{z®1)d(y) |z,yc AA =4 @ H|.

min

Given a compact quantum group (H, A), we denote by O(H) its
dense Hopf *-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of Ais Pu(A):={aec A|d(a) € A®a O(H) }.
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Pulling back noncommutative vector bundles

Theorem (P. M. H., T. Maszczyk)

Let (H,A) be a compact quantum group, A and A’
(H,A)-C*-algebras, B and B’ the corresponding fixed-point
subalgebras, and f : A — A’ an equivariant *-homomorphism.
Then, if the action of (H,A) on A is free and V is a representation
of (H,A), the following left B'-modules are isomorphic

B} ® (Pa(4)0V) = Py(AHOV .

Here B'; stands for the B'-B-bimodule with the right action given
by f,ie.b-c=bf(c).
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Pulling back noncommutative vector bundles

Theorem (P. M. H., T. Maszczyk)

Let (H,A) be a compact quantum group, A and A’
(H,A)-C*-algebras, B and B’ the corresponding fixed-point
subalgebras, and f : A — A’ an equivariant *-homomorphism.
Then, if the action of (H,A) on A is free and V is a representation
of (H,A), the following left B'-modules are isomorphic

B} ® (Pa(4)0V) = Py(AHOV .

Here B'; stands for the B'-B-bimodule with the right action given
by f,ie.b-c=bf(c).

Pulling-back Corollary
The induced map (f|p)s : Ko(B) — Ko(B’) satisfies

(f18)« ([P (A)DV]) = [Pr(A)OV].
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Odd-to-even connecting homomorphism

For any one-surjective pullback diagram of rings

Rll R RZ;

Ris

there exists the following long exact sequence in algebraic K-theory:

aalg

- — l(ﬁlg(leg) 10 l(b(f%) — l(b(f%l (&) }%2) — }(b(fglg),
with 8 determined by G Loo(R12) > U — M € Proj(R),

M an

\ /

RYy < RY,.
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The Milnor idempotent

There exist liftings ¢,d € M, (Rz) such that 7%(c) = U and
712(d) = U~!. These liftings yield an explicit invertible lifting
U € Ms,(Rs) of (’é 0 ) as follows:

-1

~ ([ c2—-dc) cd—1 A d 1 —de
U'_( 1—dc d )’WlthU —<cd—1 c(2—dc)>'

Now we can write an idempotent matrix (Milnor idempotent)

. I, 0 ~( I, 0\ ~_4
representing the pullback module: M 22 R?"py;. Here I, is the
identity matrix of the same size as the matrix U.
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The Milnor idempotent

There exist liftings ¢,d € M, (Rz) such that 7%(c) = U and
712(d) = U~!. These liftings yield an explicit invertible lifting
U € Ms,(Rs) of (’é 0 ) as follows:

-1

~ ([ c2—-dc) cd—1 A d 1 —de
U'_( 1—dc d )’WlthU —<cd—1 c(2—dc)>'

Now we can write an idempotent matrix (Milnor idempotent)

. I, 0 ~( I, 0\ ~_4
(5 )05 §)0) o
representing the pullback module: M 22 R?"py;. Here I, is the
identity matrix of the same size as the matrix U. The assignment

O K ®(Raz) 3 [Ulag — [pu] — [In] € Ko(R)

defines the odd-to-even connecting homomorphism.
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The Mayer-Vietoris 6-term exact sequence

If Ry5 is a unital C*-algebra, there is a functorial surjection
KY8(Ryy)> [Ulaig = [U]€ K1(R12). One can prove that any
set-theoretical splitting s: Kl(ng)%Kflg(Rm) defines a
connecting homomorphism for the Mayer-Vietoris 6-term exact

sequence of a one-surjective pullback of unital C*-algebras via the

formula 9y := 0™ o s .
0 10

rln2
Ko(R) —— Ko(R1) ® Ko(R2) — Ko(R12)

810T la(n

wl—m2
Kl(ng) — Kl(Rl)@Kl(Rg) — Kl(R),

Here the even-to-odd connecting homomorphism 0y is given by
the formula ,
901([p)) := [In, €™,

where @ is a self-adjoint lifting of the projection p to M, (Rz2), i.e.

m(Q) =pand Q* = Q.
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K-Isomorphism Theorem

Let ¢ : A, — By, 09 : Ay — By and P12 : A9 — By be
*_homomorphisms between pullback diagrams of C*-algebras
rendering the entire diagram

B

e VAN
N AT N A

A > B
12 P12 12

Ay

commutative and inducing isomorphisms on K-groups. Then, if mo

and py are surjective, the induced *-homomorphism ¢ also yields
an isomorphim in K-theory.
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Modules associated to piecewise cleft coactions

Let H be a Hopf algebra, let
/P \
P1 T> P12 T P2

be a one-surjective pullback diagram of H-comodule algebras, and
let v; : H — P; be cleaving maps.
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Modules associated to piecewise cleft coactions

Let H be a Hopf algebra, let
/P \
P1 T> P12 T P2

be a one-surjective pullback diagram of H-comodule algebras, and
let v; : H — P; be cleaving maps.

Clutching Theorem

If V is a finite-dimensional left H-comodule, then the associated
left ¢S -module POV is the Milnor module for the

automorphism of PS™ ® V given by

b® v — b(F1071)(v(_2))(F2072) " (v(_1)) ® V(0.
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Quantum balls and spheres

For the Hong-Szymanski quantum balls and Vaksman-Soibelman
quantum spheres, we just proved:

Theorem (F. D'Andrea, P. M. H., M. Tobolski)
Vn € N\ {0} 3 a U(1)-equivariant pullback of C*-algebras:

SQn—l—l
/ \ |
C(B2) @ C(SY)
\

/

C(s2+1) ® C(Sh).

C(s?n 1
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Bundles over quantum complex projective spaces

Corollary

Vn € N\ {0} 3 a pullback of C*-algebras:

C(CPP)

7

\
c(cpPr1) c(B2m)
\ /

SZn 1)
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Bundles over quantum complex projective spaces

Corollary

Vn € N\ {0} 3 a pullback of C*-algebras:
C(CPhy)
c(cpPr1) c(B2m)
\ B )/

Ko(C(CP})) —— Ko(C(CP) 1)) @ Ko(C(BF")) — Ko(C(S2™ 1))

310}\ 1601

Ki(C(52")) ¢ K1(C(CP—Y) @ Ky(C(BYM) e Ki(C(CPy)
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Multipullback quantum complex projective

C(CP%)

\

\

C(Sh )
o1 0 01 (//////
T ®C(Sh) T ®C(S")

(1)00'1

) ® C(SY)
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Multipullback quantum spheres Sf{NH

C(S2N+1) is the C*-subalgebra of [[Y, 7® @ C(S') @ TEN—
defined by the compatibility conditions prescribed by the following
diagrams (0 <i < j < N, ®-supressed):

TiC(SH)TN TiC(SH)TN—I

TiC(SHTI—=te(sh) TN,

Here o := id* ® 0 @ idN =% with domains and codomains
determined by the context.
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Multipullback quantum spheres Sf{NH

C(S2N 1) is the C*-subalgebra of Hi]\io T @ C(SY) @ TN
defined by the compatibility conditions prescribed by the following
diagrams (0 <i < j < N, ®-supressed):

TiC(SH)TN TiC(SYHTN—I

TiC(SHTI—=te(sh) TN,

Here o := id* ® 0 @ idN =% with domains and codomains
determined by the context.

We equip all C*-algebras in the diagrams with the diagonal actions
of U(1). Since all morphisms in the diagrams are U (1)-equivariant,
we obtain the diagonal U(1)-action on C(S2N*1).

13/18



Reducing to the quantum-group case

Py - ~eelr "7 osy)
C(SU,(2)) C(BH®C(SY) C(SH)&T T22C(SY)
C(SU,(2))2C/(SY) C(SH)eC(s")

w®id
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Reducing to the quantum-group case

[ A
Py~ ~%eir o)
C(SU,(2)) C(BH®C(SY) C(SH)eT T22C(SY)
C(SU,(2))2C/(SY) C(SH)eC(s")
w®id

K-lsomorphism Lemma

The above *-homomorphisms are U(1)-equivariant, and the
induced *-homomorphisms on fixed-point subalgebras yield
isomorphisms on K-groups.
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Let k € Z. We call the left C(CP#)-module

Ly :={a € C(SY) |V A€ U() : ar(a) = Na}

the section module of the associated line bundle of winding
number k.

Theorem

| A\

The group Ko(C(CP3)) is freely generated by elements
[1]7 [Ll] - [1]7 [Ll @ L—l] - [2]

Furthermore, L1 & L_y = C(CP%) & C(CP#)e. Here

e € C(CPZ%) is an idempotent such that C(CP#)e cannot be
realized as a finitely generated projective module associated with
the U(1)-C*-algebra C(S%;) of Heegaard quantum 5-sphere.
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Proof outline

© Take the SU,(2)-prolongation PsCI°WM)O(SU,(2)). Then
take the fundamental representation C? of SU,(2), and
compute the clutching matrix of the associated module

POoUMIO(SU,(2))00E%@e? = L) o L,
from the Clutching Theorem.
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take the fundamental representation C? of SU,(2), and
compute the clutching matrix of the associated module

POoUMIO(SU,(2))00E%@e? = L) o L,
from the Clutching Theorem.

@ The clutching matrix turns out to be the fundamental
representation matrix Uy, so its class generates K1 (C(SU,(2))).
Now it follows from the six-term Mayer-Vietoris exact
sequence that the Milnor class

O ([Us]) = [Lh & L'4] -2
is the third generator of KO(P5U(1)).
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Proof outline

© Take the SU,(2)-prolongation PsCI°WM)O(SU,(2)). Then
take the fundamental representation C? of SU,(2), and
compute the clutching matrix of the associated module
p5DO(U(1))(g(SUq(Q))DO((SUq(2))@2 =Lial

from the Clutching Theorem.

@ The clutching matrix turns out to be the fundamental
representation matrix Uy, so its class generates K1 (C(SU,(2))).
Now it follows from the six-term Mayer-Vietoris exact
sequence that the Milnor class

Ow([Uy]) = [Li® L. ,] -2
is the third generator of KO(P5U(1)).

© Finally, combining the above with the Isomorphism Lemma
and the Pulling-back Corollary, we conclude that
[L1 @ L_1] — 2 is the third generator of Ko(C(CPZ%)).
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From K,(C(T?)) to K{(C(S?3

T. Loring proved that

B 1@ f 1@g+udh
T \legturoh 101-1f

generates the non-trivial part of Ko(C(T?)). Here u is the
standard generating unitary of C(S'), and f, g and h are
appropriately chosen functions on S?.
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From K,(C(T?)) to K{(C(S?3

T. Loring proved that

B 1@ f 1@g+udh
T \legturoh 101-1f

generates the non-trivial part of Ko(C(T?)). Here u is the
standard generating unitary of C(S'), and f, g and h are
appropriately chosen functions on S'. Next, let s be the
generating isometry of the Toeplitz algebra 7. Then

Q::< 1®f 1®g+s®h

1
10g+s @ h 1®1—1®f> € Mp(T @ C(57))

is a self-adjoint lifting of 3, and the even-to-odd connecting
homomorphism vyields a generator of K1(C/(S%,)) = Z:

01([B]) = [(€*™9, I)].

17/18



The Milnor idempotent simplified

One can explicitly compute e2™? to be:

prig _ (1814 (1=58) & (exp(2ming ) = 1) 00
0®0 101)’

where X[0,1] is a characterisitc function.
2
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[(IQveQMQ)] = [(177))] € Kl(C(S%I))a

we can take U = (1,v) to compute the Milnor idempotent py.
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The Milnor idempotent simplified

One can explicitly compute e*™? to be:

prig _ (1814 (1=58) & (exp(2ming ) = 1) 00
0®0 101)’

where X[0,1] is a characterisitc function. Denote the upper left
’2
entry of the above matrix by v. Since

[(12762MQ)] = [(177))] € Kl(C(S%I))a

we can take U = (1,v) to compute the Milnor idempotent py.
Finally, homotoping py we arrive at

wl = [ (5 §)] € Rotcicr,

where

e:=(1,s" @1+ (1—ss")®ss")|.
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