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Free actions of compact quantum groups

Let A be a unital C∗-algebra and δ : A→ A⊗min H an injective
unital ∗-homomorphism. We call δ a coaction (or an action of the
compact quantum group (H,∆) on A) if

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),
2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A ⊗

min
H (counitality).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .

Given a compact quantum group (H,∆), we denote by O(H) its
dense Hopf ∗-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is PH(A) := { a ∈ A | δ(a) ∈ A⊗alg O(H) }.
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Pulling back noncommutative vector bundles

Theorem (P. M. H., T. Maszczyk)

Let (H,∆) be a compact quantum group, A and A′

(H,∆)-C*-algebras, B and B′ the corresponding fixed-point
subalgebras, and f : A→ A′ an equivariant *-homomorphism.
Then, if the action of (H,∆) on A is free and V is a representation
of (H,∆), the following left B′-modules are isomorphic

B′f ⊗
B

(
PH(A)�V

) ∼= PH(A′)�V .

Here B′f stands for the B′-B-bimodule with the right action given
by f , i.e. b · c = bf(c).

Pulling-back Corollary

The induced map (f |B)∗ : K0(B)→ K0(B
′) satisfies

(f |B)∗
(
[PH(A)�V ]

)
= [PH(A′)�V ] .
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Odd-to-even connecting homomorphism

For any one-surjective pullback diagram of rings

R1

π1 ''

Roo // R2

π2wwww

R12

,

there exists the following long exact sequence in algebraic K-theory:

· · · −→ Kalg
1 (R12)

∂alg10−→ K0(R) −→ K0(R1 ⊕R2) −→ K0(R12),

with ∂alg10 determined by GL∞(R12) 3 U 7−→M ∈ Proj(R),

Rn1

(π1,··· ,π1)
((

Moo // Rn2

(π2,··· ,π2)
vvvv

Rn12
U−→ Rn12 .
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The Milnor idempotent

There exist liftings c, d ∈Mn(R2) such that π2(c) = U and
π2(d) = U−1. These liftings yield an explicit invertible lifting
Ũ ∈M2n(R2) of

(
U 0

0 U−1

)
as follows:

Ũ :=

(
c(2− dc) cd− 1

1− dc d

)
, with Ũ−1 =

(
d 1− dc

cd− 1 c(2− dc)

)
.

Now we can write an idempotent matrix (Milnor idempotent)

pU :=

((
In 0
0 0

)
, Ũ

(
In 0
0 0

)
Ũ−1

)
∈M2n(R)

representing the pullback module: M ∼= R2npU . Here In is the
identity matrix of the same size as the matrix U .

The assignment

∂alg10 : Kalg
1 (R12) 3 [U ]alg 7−→ [pU ]− [In] ∈ K0(R)

defines the odd-to-even connecting homomorphism.

6/18



The Milnor idempotent

There exist liftings c, d ∈Mn(R2) such that π2(c) = U and
π2(d) = U−1. These liftings yield an explicit invertible lifting
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The Mayer-Vietoris 6-term exact sequence

If R12 is a unital C*-algebra, there is a functorial surjection
Kalg

1 (R12)3 [U ]alg 7→ [U ]∈K1(R12). One can prove that any

set-theoretical splitting s : K1(R12)→Kalg
1 (R12) defines a

connecting homomorphism for the Mayer-Vietoris 6-term exact
sequence of a one-surjective pullback of unital C*-algebras via the
formula ∂10 := ∂alg10 ◦ s .

K0(R) −−−−→ K0(R1)⊕K0(R2)
π1
∗−π2

∗−−−−→ K0(R12)

∂10

x y∂01
K1(R12)

π1
∗−π2

∗←−−−− K1(R1)⊕K1(R2) ←−−−− K1(R),

Here the even-to-odd connecting homomorphism ∂01 is given by
the formula

∂01([p]) := [In, e
2πiQ] ,

where Q is a self-adjoint lifting of the projection p to Mn(R2), i.e.
π2(Q) = p and Q∗ = Q.
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K-Isomorphism Theorem

Theorem

Let φ1 : A1 → B1, φ2 : A1 → B2 and φ12 : A12 → B12 be
*-homomorphisms between pullback diagrams of C*-algebras
rendering the entire diagram

A

}} !!

φ̃
// B

}} !!

A1

π1
!!

φ1

33A2

π2
}}

φ2

++B1

ρ1
!!

B2

ρ2
}}

A12
φ12

// B12

commutative and inducing isomorphisms on K-groups. Then, if π2
and ρ2 are surjective, the induced *-homomorphism φ̃ also yields
an isomorphim in K-theory.
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Modules associated to piecewise cleft coactions

Let H be a Hopf algebra, let

P

}} !!

P1
π̃1

// P12 P2
π̃2

oo

be a one-surjective pullback diagram of H-comodule algebras, and
let γi : H → Pi be cleaving maps.

Clutching Theorem

If V is a finite-dimensional left H-comodule, then the associated
left PcoH

12 -module P�V is the Milnor module for the
automorphism of PcoH

12 ⊗ V given by

b⊗ v 7−→ b(π̃1◦γ1)(v(−2))(π̃2◦γ2)−1(v(−1))⊗ v(0).
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Quantum balls and spheres

For the Hong-Szymański quantum balls and Vaksman-Soibelman
quantum spheres, we just proved:

Theorem (F. D’Andrea, P. M. H., M. Tobolski)

∀n ∈ N \ {0} ∃ a U(1)-equivariant pullback of C*-algebras:

C(S2n+1
q )

vv ))

C(S2n−1
q )

((

C(B2n
q )⊗ C(S1)

uu

C(S2n−1
q )⊗ C(S1).
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Bundles over quantum complex projective spaces

Corollary

∀n ∈ N \ {0} ∃ a pullback of C*-algebras:

C(CPnq )

xx %%

C(CPn−1q )

&&

C(B2n
q )

yy

C(S2n−1
q ).

K0(C(CPnq )) // K0(C(CPn−1q ))⊕K0(C(B2n
q )) // K0(C(S2n−1

q ))

∂01
��

K1(C(S2n−1
q ))

∂10

OO

K1(C(CPn−1q ))⊕K1(C(B2n
q ))oo K1(C(CPnq ))oo
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Multipullback quantum complex projective
plane

C(CP 2
T )

P1 T ⊗ T

T ⊗ T T ⊗ T C(S3
H)

σ2 ⊕ σ2
(ψ02 ◦ σ1, ψ12 ◦ σ2)

C(S1)⊗ T

σ1 ψ01 ◦ σ1

T ⊗ C(S1) T ⊗ C(S1)

C(S1)⊗ C(S1)

σ1 φ̃ ◦ σ1
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Multipullback quantum spheres S2N+1
H

C(S2N+1
H ) is the C*-subalgebra of

∏N
i=0 T ⊗i ⊗ C(S1)⊗ T ⊗N−i

defined by the compatibility conditions prescribed by the following
diagrams (0 ≤ i < j ≤ N , ⊗-supressed):

T iC(S1)T N−i
σj

**

T jC(S1)T N−j
σi

tt

T iC(S1)T j−i−1C(S1)T N−j .

Here σk := idk ⊗ σ ⊗ idN−k with domains and codomains
determined by the context.

We equip all C*-algebras in the diagrams with the diagonal actions
of U(1). Since all morphisms in the diagrams are U(1)-equivariant,
we obtain the diagonal U(1)-action on C(S2N+1

H ).
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Reducing to the quantum-group case

P5

yy &&

f

,,
C(S5

H)

zz $$

C(SUq(2))

id⊗1
C(S1) %%

ω⊗1T

%%

C(B4
q )⊗C(S1)

pr2⊗id

22

pr1⊗id
xx

C(S3
H)⊗T

id⊗σ
$$

T 2⊗C(S1)

ν⊗id
zz

C(SUq(2))⊗C(S1)

ω⊗id

22
C(S3

H)⊗C(S1)

K-Isomorphism Lemma

The above *-homomorphisms are U(1)-equivariant, and the
induced *-homomorphisms on fixed-point subalgebras yield
isomorphisms on K-groups.
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Main result

Definition

Let k ∈ Z. We call the left C(CP 2
T )-module

Lk := {a ∈ C(S5
H) | ∀ λ ∈ U(1) : αλ(a) = λka}

the section module of the associated line bundle of winding
number k.

Theorem

The group K0(C(CP 2
T )) is freely generated by elements

[1], [L1]− [1], [L1 ⊕ L−1]− [2].

Furthermore, L1 ⊕ L−1 ∼= C(CP 2
T )⊕ C(CP 2

T )e. Here
e ∈ C(CP 2

T ) is an idempotent such that C(CP 2
T )e cannot be

realized as a finitely generated projective module associated with
the U(1)-C*-algebra C(S5

H) of Heegaard quantum 5-sphere.
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Proof outline

1 Take the SUq(2)-prolongation P5�O(U(1))O(SUq(2)). Then
take the fundamental representation C2 of SUq(2), and
compute the clutching matrix of the associated module

P5�
O(U(1))O(SUq(2))�O((SUq(2))C2 = L′1 ⊕ L′−1

from the Clutching Theorem.

2 The clutching matrix turns out to be the fundamental
representation matrix Uf , so its class generates K1(C(SUq(2))).
Now it follows from the six-term Mayer-Vietoris exact
sequence that the Milnor class

∂10([Uf ]) = [L′1 ⊕ L′−1]− 2

is the third generator of K0(P
U(1)
5 ).

3 Finally, combining the above with the Isomorphism Lemma
and the Pulling-back Corollary, we conclude that
[L1 ⊕ L−1]− 2 is the third generator of K0(C(CP 2

T )).
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From K0(C(T2)) to K1(C(S3
H ))

T. Loring proved that

β :=

(
1⊗ f 1⊗ g + u⊗ h

1⊗ g + u∗ ⊗ h 1⊗ 1− 1⊗ f

)
generates the non-trivial part of K0(C(T2)). Here u is the
standard generating unitary of C(S1), and f , g and h are
appropriately chosen functions on S1.

Next, let s be the
generating isometry of the Toeplitz algebra T . Then

Q :=

(
1⊗ f 1⊗ g + s⊗ h

1⊗ g + s∗ ⊗ h 1⊗ 1− 1⊗ f

)
∈M2(T ⊗ C(S1))

is a self-adjoint lifting of β, and the even-to-odd connecting
homomorphism yields a generator of K1(C(S3

H)) ∼= Z:

∂01([β]) = [(e2πiQ, I2)].
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The Milnor idempotent simplified

One can explicitly compute e2πiQ to be:

e2πiQ =

(
1⊗ 1 + (1− ss∗)⊗ (exp(2πiχ[0, 1

2
]f)− 1) 0⊗ 0

0⊗ 0 1⊗ 1

)
,

where χ[0, 1
2
] is a characterisitc function.

Denote the upper left

entry of the above matrix by v. Since

[(I2, e
2πiQ)] = [(1, v)] ∈ K1(C(S3

H)),

we can take U = (1, v) to compute the Milnor idempotent pU .
Finally, homotoping pU we arrive at

[pU ] =

[(
e 0
0 0

)]
∈ K0(C(CP 2

T )),

where
e := (1, ss∗ ⊗ 1 + (1− ss∗)⊗ ss∗) .
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