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Finite free distributive lattices

By Koichi YAmMAMoOTO

(Received March 9, 1954)

1.—Introduction.—The problem to determine the order f(xn) of
the free distributive lattice FD(n). generated by »n symbols vy, -+, v,
was first proposed by Dedekind, but very little is known about this
number [1, p. 146]. Only the first six values of f(n) are computed,

and enumerations of further f(n) appear to lie beyond the scope of -

any reasonable methods known today. It might, however, be pointed
out that Morgan Ward, who found f(6) by the help of computing
machines, stated [2] an asymptotic relation

log; log; f(n) ~ n
and that the present author proved in a previous note [3] that
Ff(n)=0 (mod 2) if 7n=0 (mod 2).

An inspection of numerical results f(n), <6 suggests strongly
the following asymptotic equivalence

©) loge fin)~ /2 2m7¥
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A classical model of a FDA
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A classical model of a FDA

Consider the family {V;};c(o,.. n} of closed subsets of PM(C)
covering of PV(C):

Vii=A{[zo:...:xn] | |zi] = max{|zo|,...,|xN]|}}.

The distributive lattice generated by the subsets V;  PY(C) is free.
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A noncommutative model of a FDA

Theorem (P.M.H., A. Kaygun, B. Zielinski)
Let C(PN(T)) € [IX, TN be the C*algebra of the Toeplitz
quantum projective space, and let

mi: CPN(T)) — 72N, ie{0,...,N},

be the family of restrictions of the canonical projections onto the
components. Then the family of ideals {ker m;};c(o,...n} generates
a free distributive lattice.
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Odd-dimensional spheres from solid tori

AN+ . — {(Zo,...,ZN) e CN+! | ‘20’2 + 4 |ZN’2 = 1}
Let Vi == {(20,...,2n) € S* T | |z;] = max{|z|,...,|2n][}}
Then

2N+1 . _ " ,
S = U V.
1=0
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C(S?N*1) as a multi-pullback C*-algebra

The multi-pullback algebra A™ of a finite family
{m} + Ai — Aij = Ajitijes iz of algebra morphisms is defined as

A" = {(ai)iej S HAi

icJ

mi(ai) = 7 (az), Vi, j € J, i 75.7} :

v
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C(S?N*1) as a multi-pullback C*-algebra

The multi-pullback algebra A™ of a finite family
{m} + Ai — Aij = Ajitijes iz of algebra morphisms is defined as

A" = {(ai)iej S HAi

icJ

mi(ai) = 7 (az), Vi, j € J, i #j}-

v

C(S8?N*1) is isomorphic as a C*-algebra to the subalgebra of
I co)®¥ ec(s')e oDV
0<i<N
defined by the compatibility conditions (0 <i < j < N,
® suppressed):

C(DY'C(SH)C(D)N-i (DY C(SHC(D)YN-
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The Toeplitz algebra

Definition

The Toeplitz algebra T is the universal C*-algebra generated by z
and z* satisfying z*z = 1.
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The Toeplitz algebra

Definition

The Toeplitz algebra T is the universal C*-algebra generated by z
and z* satisfying z*z = 1.

We have a short exact sequence of U(1)-equivariant
C*-homomorphisms:

0—K—T-5C(s") —o.

Here u is the unitary generator of C'(S!), K is the ideal of compact
operators, and o is the symbol map (o(z) := u). The action « of
U(1) on T is given by z — Az.
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The Toeplitz algebra

Definition

The Toeplitz algebra T is the universal C*-algebra generated by z
and z* satisfying z*z = 1.

We have a short exact sequence of U(1)-equivariant
C*-homomorphisms:

0—K—T-5C(s") —o.

Here u is the unitary generator of C'(S!), K is the ideal of compact
operators, and o is the symbol map (o(z) := u). The action « of
U(1) on T is given by z — Az.

We dualize this action to a coaction of C(U(1)) on T. Explicitly,
we have:
p: T — TRCU®D))=CU®D),T),
p(t)(A) == an(t), p(2)(A) = Az, p(z) =z®u.

We use the Heyneman-Sweedler notation p(t) =: (o) ® ().
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Quantum Dynamics, 2016-2019

Research and Innovation Staff Exchange network of:

IMPAN (Poland), University of Warsaw (Poland), University of
todz (Poland), University of Glasgow (G. Britain), University of
Aberdeen (G. Britain), University of Copenhagen (Denmark),
University of Miinster (Germany), Free University of Brussels
(Belgium), SISSA (ltaly), Penn State University (USA), University
of Colorado at Boulder (USA), University of Kansas at Lawrence
(USA), University of California at Berkeley (USA), University of
Denver (USA), Fields Institute (Canada), University of New
Brunswick at Fredericton (Canada), University of Wollongong
(Australia), Australian National University (Australia), University of
Otago (New Zealand), University Michoacana de San Nicolas de
Hidalgo (Mexico).
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Tentative plan of conferences

New Geometry of Quantum Dynamics conferences
pending approval:
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Tentative plan of conferences

New Geometry of Quantum Dynamics conferences
pending approval:

@ The Banach Center, Warsaw, 15 January — 19 January 2018
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Tentative plan of conferences

New Geometry of Quantum Dynamics conferences
pending approval:

@ The Banach Center, Warsaw, 15 January — 19 January 2018

@ The Fields Institute, Toronto, mid-July — mid-August 2019

9/18



Multi-pullback quantum spheres SiINH

C(S2NF1) is the C*-subalgebra of [TV, 7% @ C(S") @ TEN
defined by the compatibility conditions prescribed by the following
diagrams (0 <1i < j < N, ®-supressed):

TiC(SY)TN TiC(SHTN-I

TO(S) T~ 1O (SY TN,

Here o, := id* ® o @ idV~* with domains and codomains
determined by the context.
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Multi-pullback quantum spheres SiINH

C(S2NF1) is the C*-subalgebra of [TV, 7% @ C(S") @ TEN
defined by the compatibility conditions prescribed by the following
diagrams (0 <1i < j < N, ®-supressed):

TiC(SY)TN TiC(SHTN-I
TIOSYH)TI— oSt TN .

Here o, := id* ® o @ idV~* with domains and codomains
determined by the context.

We equip all C*-algebras in the diagrams with the diagonal actions
of U(1). Since all morphisms in the diagrams are U(1)-equivariant,
we obtain the diagonal U (1)-action on C'(S7' ).
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Gauging coactions

Let o : G — Aut(A) be an action of a compact Hausdorff group G
on a unital C*-algebra A. As with U(1) acting on 7, we encode
the G-action on A through the C'(G)-coaction on A:

p:A3ar— ag®aq) € ARC(G) = C(G,A), pla)(g) = ay(a).
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Gauging coactions

Let o : G — Aut(A) be an action of a compact Hausdorff group G
on a unital C*-algebra A. As with U(1) acting on 7, we encode
the G-action on A through the C'(G)-coaction on A:

p:A3ar— ag®aq) € ARC(G) = C(G,A), pla)(g) = ay(a).

o (A® C(G))P is the C*-algebra A ® C(G) equipped with the
diagonal coaction a ® h — a(g) ® h(1y ® a(yha).

o (A® C(G)) is the C*-algebra A ® C(G) equipped with the
coaction on the rightmost factor a ® h — a ® h(1) ® hy).

G-equivariant C*-algebra isomorphisms:

F:(ARC(Q)’ > (A C(@G)E, a®h— ag) ®anh,
F1(A®CG) = (AR C(G)P, a®h+ ag) ® S(aq))h.

Here S(h)(g) := h(g™!).
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C(S2V*1) as a gauged multi-pullback

The following diagrams (0 < i < j < N, ® suppressed) are
U (1)-equivariant with respect to the U(1)-actions on the rightmost
factors.

i TNC(SY) TNCO(SY) j

o] ~ |-

ijlc(sl)TijC(Sl) ;\Pij 7-1'0(51)7-Nfz‘710(sl>7

®tk®v® ® @ w

=i+1
l#]
7j—1 N
— @ty @S| ] tmay 1)@ ® tio) ® w2
fon e =+
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C(S2V*1) as a gauged multi-pullback

The following diagrams (0 < i < j < N, ® suppressed) are
U (1)-equivariant with respect to the U(1)-actions on the rightmost
factors.

i TNC(SY) TNCO(SY) j

o] ~ |-

ijlc(sl)TijC(Sl) ;\Pij 7-1'0(51)7-Nfz‘flc«(sl>7

~ i—1 N
Ui RQtrove Q) teow
k=0

l=i+1
1#7
7j—1 N N
— Qtroy @S | [ tma) | S@wwy® @) tio) ©w.
iy et =i

C(S2N*1) is isomorphic as a U(1)-C*-algebra to the multi-pullback
U(1)-C*-algebra of the above diagrams. e



Quantum complex projective spaces PN (7T")

C(PN(T)) is the C*-subalgebra of Hf\;o TEN defined by the
compatibility conditions prescribed by the diagrams
(0<i<j<N):

i TON TN j

O-Jl lai+1

T®j—1 ® C(Sl) ® T®N— Yij T®z ® C( ) T®N i— 1

N—-1 N-1
”.®tk®v®®tl’_>®tk @8 | (I] tme)v | © @ tuo)
I=j

1 =
=i+ k;ﬁz m#i
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Quantum complex projective spaces PN (7T")

C(PN(T)) is the C*-subalgebra of Hf\;o TEN defined by the
compatibility conditions prescribed by the diagrams
(0<i<j<N):

i TON TN j

Ujl lai+1

T®j—1 ® C(Sl) ® 7~®N— Yij T®z ® C( ) T®N i— 1

N-1 N-1
Uy ®tk®v® ® t ®tk @S| (I] tmey)v | ® & tio)-
I=it+1 k= m=0 1=j
: 2N+1
It follows from the gauged presentation of C'(S7" ") that
C@®N(T)) = C(sE )T,
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Universal presentation of C(S?{NH)

Let us define the following elements of C/(SZ*1):
a; == ((o®id®*V) (1% 22019V, .., (i[d*Y00) (1% 0019V 7).
It straightforward to check that Vi,5 € {0,...,N}, i #j:

N
a;a; = aja;, aia; = a;ai, aja; =1, H(l —a;a;) = 0.
=0
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Lemma (Key Lemma)

C(S2N*1Y) is isomorphic as a U(1)-C*-algebra with the universal
C*-algebra generated by a;'s satisfying the above relations. The
U(1)-action on the latter is given by rephasing the generators.
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Universal presentation of C(S?{NH)

Let us define the following elements of C(S?{NH):
a; = ((e®id®M) (1% @201V, ([d*V®o) (1¥02019V ).

It straightforward to check that Vi,5 € {0,...,N}, i #j:
N

a;a; = aja;, aia; = ajai, aja; =1, H(l —a;a;) = 0.
=0

Lemma (Key Lemma)

C(S2N*1Y) is isomorphic as a U(1)-C*-algebra with the universal
C*-algebra generated by a;'s satisfying the above relations. The
U(1)-action on the latter is given by rephasing the generators.

| A\

Corollary
C(SHT) = TONT/KONH, Ko (C(S3 g ) =Z[C(SH =1,
K1(C(SH™)) = 2.

A\
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A key exact sequence

With respect to the diagonal U (1)-action, for any positive integer k,
there exists a U (1)-equivariant short exact sequence of C*-algebras

0—C(S# @ K — C(S% ™) — T® @ C(S!) —0.
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A key exact sequence

With respect to the diagonal U(1)-action, for any positive integer k,
there exists a U (1)-equivariant short exact sequence of C*-algebras

0—C(S# @ K — C(S% ™) — T® @ C(S!) —0.

Proof.

0— = TEF QK — TEk g T 2% 78k g 0(51) —=0

(T @ K) /K = C(SF) ek,
(TEF & T)/KPEH = C(SHH).
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Invariant subalgebras

Forall k € {1,..., N}, we have

0 C(S?}cfl) ® ]C®N—k+l C(S?}CH) ® K®N—k

— T @ C(S") @ KEN"F —0.
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Invariant subalgebras

Forall k € {1,..., N}, we have

0 C(S?}cfl) ® ]C®N—k+l C(S?}Hl) ® K®N—k

— T @ C(S") @ KEN"F —0.

Next, let

si= (053 @ IC®N*’“>U(1), ke{0,... N}
Using this notation we can write

0—=Sp_1 —= S, —= T QKN+ 0,
where k € {1,...,N}.
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V N € N\ {0}: Ko(C(PY(T))) = ZN+! and K1 (C(PY(T))) = 0.
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V N € N\ {0}: Ko(C(PY(T))) = ZN+! and K1 (C(PY(T))) = 0.

Proof. We prove by induction that K(S;,) = Z**! and
K1(Sg) =0 forall k € {0,...,N}. The first step follows from
So = K, the induction step follows from

Ko(Sg—1) — Ko(Sk) — Ko(T®F)

| |

K1(T%) <— K1(Sk) <— K1(Sk-1),

and the conclusion follows from Sy = C(PN(T)). O
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Noncommutative line bundles

Let LN = {a € C(SZNTY) |V A € U(1) : ax(a) = Nea}. Then
VN eN\{0}: [LAH] =2V = m=n.
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Proof outline:
@ By Key Lemma, the assignments ay, +— by when k < 2 and
ag +— bg when k > 2 define a U(1)-equivariant
C*-homomorphism f : C(SH ™) — C(S%). Here ag, ..., ax
are isometries generating C'(S7" ™) and by, by are isometries
generating C/(S%,).
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Let LN = {a € C(SZNTY) |V A € U(1) : ax(a) = Nea}. Then
VN eN\{0}: [LAH] =2V = m=n.

Proof outline:

@ By Key Lemma, the assignments ay, +— by when k < 2 and
ag +— bg when k > 2 define a U(1)-equivariant
C*-homomorphism f : C(SH ™) — C(S%). Here ag, ..., ax
are isometries generating C'(S7" ™) and by, by are isometries
generating C/(S%,).

@ Taking advantage of Chern-Galois theory [Brzezinski, P.M.H.],
we conclude that the induced map

fo: Ko(C(BY(T))) — Ko(C(BY(T)))

satisfies fi([L2N*1]) = [L2,] for any m € Z.

@ Finally, as an index pairing computation proves that
[L3]=[L3] = m =mn [P.M.H., R. Matthes, W. Szymarski],

the conclusion follows.
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