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The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If f : Sn → Rn is continuous,
then there exists a pair (p,−p) of antipodal points on Sn such
that f(p) = f(−p).

Assuming that both temperature and pressure are continuous
functions, we can conclude that there are always two antipodal
points on Earth with exactly the same pressure and temperature.

The logical negation of the theorem

There exists a continuous map f : Sn → Rn such that for all pairs
(p,−p) of antipodal points on Sn we have f(p) 6= f(−p).
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The Borsuk-Ulam Theorem reformulated
For the antipodal action of Z/2Z on Sn and Rn, the latter
statement is equivalent to:

Equivalent negation

There exists a Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.

Indeed, if f : Sn → Rn is a continuous map with f(p) 6= f(−p) ,
then the formula

f̃(p) :=
f(p)− f(−p)
‖f(p)− f(−p)‖

defines a continuous Z/2Z-equivariant map from Sn to Sn−1.
Also, composing any such a map with the inclusion map
Sn−1 ⊂ Rn yields a nowhere vanishing continuous map
f : Sn → Rn with f(−p) = −f(p) 6= f(p). Consequently, the
Borsuk-Ulam Theorem is equivalent to:

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.
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Famous corollaries

Theorem (The Brouwer Fixed Point Theorem)

Let n be any positive integer, and Bn be a ball of dimension n.
Then every continuous map f : Bn → Bn possesses a fixed point.

Theorem (The sandwich theorem)

Let n be any positive integer. Given n measurable “objects” in the
n-dimensional Euclidean space, it is possible to divide all of them
in half (with respect to their measure, i.e. volume) with a single
(n− 1)-dimensional hyperplane.
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What is a compact quantum space?
Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the
algebra of all continuous complex-valued vanishing-at-infinity
functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded)
linear operators on a complex Hilbert that is:

1 a topologically closed set in the norm topology of operators,
2 closed under the operation of taking adjoints of operators.

Copernican-style revolution

Given a compact Hausdorff space of points, we can define the
C*-algebra of functions on the space, but the central concept is
that of a commutative C*-algebras, and points appear as
characters (algebra homomorphisms into C) rather than as primary
objects. We think of noncommutative unital C*-algebras as
algebras of functions on compact quantum spaces.
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Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center
NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior
Professors, Postdocs, or PhD Students).
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Noncommutative Geometry the Next Generation

4–17 September, B ↪edlewo & Warsaw, Master Class on:

Noncommutative geometry and quantum groups

1 Cyclic homology
by Masoud Khalkhali and Ryszard Nest

2 Noncommutative index theory
by Nigel Higson and Erik Van Erp

3 Topological quantum groups and Hopf algebras
by Alfons Van Daele and Stanis law L. Woronowicz

4 Structure and classification of C*-algebras
by Stuart White and Joachim Zacharias

19 September – 14 October, 20-hour lecture courses:

1 An invitation to C*-algebras by Karen R. Strung

2 An invitation to Hopf algebras by Réamonn Ó Buachalla

3 Noncommutative topology for beginners by Tatiana Shulman
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Conferences

1 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

2 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

3 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski

4 21–25 Nov. Structure and classification of C*-algebras
G. Elliott, K. R. Strung, W. Winter, J. Zacharias

9/19



Conferences

1 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

2 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

3 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski
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18–22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY
AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th
birthday organized by Alan Carey, George Elliott, Piotr M. Hajac,
and Ryszard Nest.

Sponsored by:

The Fields Institute, University of Toronto, Canada

National Science Foundation, USA

The Pennsylvania State University, USA
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What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C∗-algebra H with a given
unital ∗-homorphism ∆: H −→ H⊗minH such that the diagram

H
∆ //

∆
��

H ⊗
min
H

∆⊗id
��

H ⊗
min
H

id⊗∆
// H ⊗

min
H⊗

min
H

commutes and the two-sided cancellation property holds:

{(a⊗1)∆(b) | a, b ∈ H}cls = H ⊗
min

H = {∆(a)(1⊗b) | a, b ∈ H}cls.

Here “cls” stands for “closed linear span”.
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Free actions of compact quantum groups

Let A be a unital C∗-algebra and δ : A→ A⊗min H a unital
∗-homomorphism. We call δ a coaction of H on A (or an action of
the compact quantum group (H,∆) on A) iff

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),

2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A⊗min H (counitality)

3 ker δ = 0 (injectivity).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .
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Equivariant join construction

For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X ∗G is again continuous and free. In particular, for the
antipodal action of Z/2Z on Sn−1, we obtain a Z/2Z-equivariant
identification Sn ∼= Sn−1 ∗ Z/2Z for the antipodal and diagonal
actions respectively.
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Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn−1 ∗ Z/2Z→ Sn−1.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X ∗G, there does not exist a
G-equivariant continuous map f : X ∗G→ X.

Claimed to be proven by Alexandru Chirvasitu and Benjamin
Passer on 7 April 2016.

Corollary

Ageev’s conjecture about the Menger compacta.
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Gauged equivariant join construction

If Y = G, we can construct the join G-space X ∗ Y in a different
manner: at 0 we collapse X ×G to G as before, and at 1 we
collapse X ×G to (X ×G)/RD instead of X. Here RD is the
equivalence relation generated by

(x, h) ∼ (x′, h′), where xh = x′h′ .

More precisely, let R′J be the equivalence relation on I ×X ×G
generated by

(0, x, h) ∼ (0, x′, h) and (1, x, h) ∼ (1, x′, h′), where xh = x′h′.

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right
G-action on (I ×X ×G)/R′J , and the formula

X ∗G 3 [(t, x, h)] 7−→ [(t, xh−1, h)] ∈ (I ×X ×G)/R′J

yields a G-equivariant homeomorphism.
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Equivariant noncommutative join construction

Definition (L. D ↪abrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H
∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Noncommutative Borsuk-Ulam-type conjectures
Conjecture 1

Let A be a unital (nuclear) C*-algebra with a free action of a
non-trivial compact quantum group (H,∆). Then there does not
exist an H-equivariant *-homomorphism A→ A~δ H.

Conjecture 2

Let A be a unital (nuclear) C*-algebra with a free action of a
non-trivial compact quantum group (H,∆). If A admits a
character, then there does not exist an H-equivariant
*-homomorphism H → A~δ H.

The classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and
H = C(G), then Conjecture 2 states that the principal G-bundle
X ∗G is not trivializable unless G is trivial. This is clearly true
because otherwise G ∗G would be trivializable, which is
tantamount to G being contractible, and the only contractible
compact Hausdorff group is trivial. Conjecture 1 was claimed to be
true only 55 days ago, and has some serious consequences.
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compact Hausdorff group is trivial. Conjecture 1 was claimed to be
true only 55 days ago, and has some serious consequences.
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Iterated joins of the quantum SU(2) group
Consider the fibration defining the quaternionic projective space:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3, S4n+3/SU(2) = HPn.
To obtain a q-deformation of this fibration, we take H := C(SUq(2))
and A := C(S4n+3

q ) equal to the n-times iterated equivariant join of H.
The quantum principal SUq(2)-bundle thus given is not trivializable:

Theorem (main)

There does not exist a C(SUq(2))-equivariant *-homomorphism
f : C(SUq(2)) −→ C(S4n+3

q )~δ C(SUq(2)).

Proof outline: If f existed, there would be an equivariant map F
C(SUq(2))→ C(S4n+3

q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).
Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely-generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V . If
H := C(SUq(2)) and V is the fundamental representation
of SUq(2), then (H~∆H)�HV is not stably free by an index
paring calculation. This contradicts the existence of F . �
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