QUANTUM GROUPOIDS

Thomas Timmermann March 25, 2017

Westfälische Wilhelms-Universität Münster

WHAT

IS A QUANTUM GROUPOID?

FROM GROUPS TO QUANTUM GROUPS

CLASSICAL

a semigroup is a space Γ

with a unit and inversion map

QUANTUM

a <mark>bialgebra</mark> is an algebra A with a map $\Gamma \times \Gamma \xrightarrow{m} \Gamma$ s.t. with a morphism $A \xrightarrow{\Delta} A \otimes A$ s.t.

- a finite group is a semigroup \rightarrow a f.d. Hopf algebra is a bialgebra with a counit and antipode
 - a locally compact group \rightarrow a locally compact quantum group is a group with a suitable is a C*-/W*-bialgebra a topology or measure (Weil) with left/right Haar weights

GROUPOID

QUANTUM GROUPOID

basic ingredients

- a base space G^0
- · a total space G
- a target map $G \xrightarrow{t} G^0$
- a source map $G \xrightarrow{s} G^0$
- a multiplication $G_s \times_t G \xrightarrow{m} G$

- · a base algebra B
- · a total algebra A
- a target morphism $B \xrightarrow{\alpha} A$
- a source morphism $B^{op} \xrightarrow{\beta} A$
- a comultiplication $A \to A_{\beta} \times_{\alpha} A$ (if $A \circlearrowleft H$, then $A_{\beta} \times_{\alpha} A \circlearrowleft H_{\beta} \otimes_{\alpha} H$)

basic assumptions

- associativity of m
- $\cdot t(\gamma \gamma') = t(\gamma)$
- $\cdot s(\gamma \gamma') = s(\gamma')$

- \cdot coassociativity of Δ
- $\cdot \Delta(\alpha(b)) = \alpha(b) \otimes 1$
- $\cdot \Delta(\beta(b^{op})) = 1 \otimes \beta(b^{op})$
- $\cdot [\alpha(B), \beta(B^{op}] = 0$

EXAMPLES COMING FROM A GROUPOID

Associated to a finite groupoid *G*, we have two quantum groupoids:

THE FUNCTION ALGEBRA

base algebra and total algebra: $C(G^0)$ and C(G), where $\delta_g \delta_{g'}$ is $\delta_{g,g'} \delta_g$

target map and source map: $C(G^0) \Rightarrow C(G)$, pull-back along t or s

comultiplication: $C(G) \to C(G^{(2)})$, $\delta_{\gamma} \mapsto \sum_{\gamma = \gamma' \gamma''} \delta_{\gamma'} \otimes \delta_{\gamma''}$

THE GROUPOID ALGEBRA

base algebra and total algebra: $\mathbb{C}G^0$ and $\mathbb{C}G$, where $g\cdot g'$ is gg' or 0

target map and source map: $\mathbb{C}G^0 \hookrightarrow \mathbb{C}G$, the natural inclusion

comultiplication: $\mathbb{C}G \to \mathbb{C}(G * G)$, $g \mapsto g \otimes g$

(G * G: all pairs (g, g')) with same source, same target)

WHY

STUDY QUANTUM GROUPOIDS?

VARIANTS OF QUANTUM GROUPOIDS AND WHERE APPEARED

- finite quantum groupoids (Nikshych & Vainerman, Böhm, ...)
- invariants of 3-manifolds (Turaev)
- partial compact quantum groups
 (De Commer & T.)
- dynamical quantum groups (Etingof & Varchenko, Koelink & Rosengren, ...)
- dynamical Yang-Baxter equation from physics
- measured quantum groupoids
 (Enock & Lesieur & Vallin)
- quantum symmetries of inclusions of II₁ factors
- algebraic quantum groupoids (Lu, Xu, Böhm & Szlachányi, T. & Van Daele)
- Pontrjagin duality for (quantum) groupoids

Work in progress: C*-algebraic theory of locally compact quantum groupoids

How

ABOUT EXAMPLES?

1101

A QUANTUM GROUPOID FROM CLASSICAL DATA

• For every space X, the full equivalence relation $X \times X$ is a groupoid:

- If Γ acts freely on X, then $(X \times X)/\Gamma$ is a groupoid over X/Γ .
- For any action of a group Γ on X, we get a quantum groupoid

$$C_0(X) \Rightarrow C_0(X) \rtimes \Gamma \ltimes C_0(X)$$

with comultiplication $f \rtimes \gamma \ltimes f' \mapsto (f \rtimes \gamma \ltimes 1) \otimes (1 \rtimes \gamma \ltimes f')$

• Roughly, if a quantum group Γ acts on an algebra B, we get a quantum groupoid $B \times \Gamma \times B^{op}$ with base B.

QUANTUM TRANSFORMATION GROUPOIDS

• If a group Γ acts on a space X, we get a transformation groupoid $X \rtimes \Gamma$

with groupoid algebra $C_0(X) \rtimes \Gamma$ and function algebra $C_0(X) \otimes C_0(\Gamma)$

• If Γ acts on an algebra B, we get crossed product with canonical maps $B \to B \rtimes \Gamma \to (B \rtimes \Gamma) \otimes \mathbb{C}\Gamma$

To obtain a quantum transformation groupoid, we also need a map $B^{op} \to B \rtimes \Gamma$, $b^{op} \mapsto \sum_{\alpha} b_{\alpha} \rtimes \gamma$

whose image commutes with $b' \times e$ for all $b' \in B$, i.e., $b'b_{\gamma} = b_{\gamma}\gamma(b')$.

• Roughly, if Γ is a quantum group and B a braided-commutative Yetter-Drinfeld algebra, we obtain quantum transformation groupoids $B \rtimes \Gamma$ and $B \rtimes \hat{\Gamma}$.

A DEFORMATION OF $S^2 \times Su(2)$

- An important compact quantum group is $SU_q(2)$, where $q \in (0,1]$:
 - $C(SU_q(2)) = C^* \left(\alpha, \gamma : \text{ the matrix } u := \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \text{ is unitary} \right)$
 - $\Delta : C(SU_q(2)) \to C(SU_q(2)) \otimes C(SU_q(2))$ given by $u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}$
- We have an inclusion $\mathbb{T} \hookrightarrow \mathrm{SU}_q(2)$ in the form of a *-homomorphism $C(\mathrm{SU}_q(2)) \stackrel{\pi}{\to} C(\mathbb{T})$ given by $\alpha \mapsto z$ and $\gamma \mapsto 0$, and obtain a quantum homogeneous space $S_q^2 = \mathbb{T} \backslash \mathrm{SU}_q(2)$ in form of $C(S_q^2) = \{ f \in C(\mathrm{SU}_q(2)) : (\pi \otimes \mathrm{id}) \Delta(f) = 1 \otimes f \},$

which is a braided-commutative Yetter-Drinfeld algebra for $SU_q(2)$.

• We get a measured quantum groupoid $\mathcal{G} = L^{\infty}(S_q^2) \rtimes SU_q(2)$, and $\mathcal{G} = L^{\infty}(\mathbb{T}\backslash SU_q(2)) \rtimes SU_q(2) \sim_M \mathbb{T} \ltimes L^{\infty}(SU_q(2)/SU_q(2)) = L\mathbb{T}.$

UNIVERSAL SYMMETRIES

• A f.d. algebra D has a quantum automorphism group QAut(D) = A with an action, that is, a homomorphism $D \stackrel{\delta}{\to} D \otimes A$ such that

$$\begin{array}{c|c} D & \xrightarrow{\delta} & D \otimes A \\ \delta \bigvee_{\delta} & \bigtriangledown & \bigvee_{\mathsf{id} \otimes \Delta} \\ D \otimes A & \xrightarrow{\delta \otimes \mathsf{id}} & D \otimes A \otimes A \end{array}$$

that is universal (every quantum group action on D is a quotient).

- For example, $QAut(\mathbb{C}^n)$ is called a quantum permutation group.
- For every map $E \rightarrow X$, we have an automorphism groupoid

$$\operatorname{Aut}(E \to X) = \coprod_{x,y \in X} \operatorname{Iso}(E_x, E_y).$$

To an inclusion of f.d. algebras B

D, we can associate a quantum automorphism groupoid QAut(B
D) with a universal action on D.