Thomas Timmermann 25th of January 2018

Westfälische Wilhelms-Universität Münster

Overview

Partial representations of groups

- What is a partial action / partial representation of a group G?
- · How do partial representations form a monoidal category?
- \rightarrow the transformation groupoid $B_G^e \rtimes G$ for the partial Bernoulli shift

Partial representations of Hopf algebras

- What is a partial representation of a Hopf algebra H?
- What is the analogue of the partial Bernoulli shift?
- \rightarrow a Hopf algebroid counterpart H_{par} to the transformation groupoid

The Bernoulli shift of a discrete quantum group

• Conceptual explanation of the construction of H_{par} on the algebraic level and on the level of C^* -algebras.

Partial actions of discrete groups

Partial actions of discrete groups

"A partial action is the restriction of an action to a non-invariant subset."

Definition A *partial action* of a discrete group *G on a set X* is given by

- a subset $D_g \subseteq X$ for each $g \in G$
- a bijection $\theta_g: D_{g^{-1}} \rightarrow D_g$ for each $g \in G$

such that

- $D_e = X$ and $\theta_e = id_X$,
- $\theta_g \circ \theta_h \subseteq \theta_{gh}$ for all $g, h \in G$ as partial maps.

Example The restriction of an action $G \bigcirc Y$ to a subset $X \subseteq Y$:

- $D_{g^{-1}} := \{x \in X : g(x) \in X\} = X \cap g^{-1}(X) \text{ for each } g \in G$
- $\theta_g(x) = g(x)$ for each $g \in G$ and $x \in D_{q^{-1}}$

Variants Partial actions on spaces, algebras, vector spaces, ...

Example Let G act on $\mathcal{P}(G) \cong \{0,1\}^G$ by left translation. Restriction to $B_G^e = \{A \subseteq G : e \in A\} \subset \mathcal{P}(G)$

yields the *partial Bernoulli shift*, where each $g \in G$ acts as

$$\{A \subseteq G : e, g^{-1} \in A\} = D_{g^{-1}} \xrightarrow{g \cdot -} D_g = \{A \subseteq G : g, e \in A\} .$$

Definition A partial action of G on

- a space X is *disconnected* if each $D_g \subseteq X$ is clopen,
- an algebra A is *disconnected* if each $D_g \subseteq A$ is a direct summand,
- a vector space is *disconnected* if we are given complements D_g^{\perp} .

A partial action $G \oplus X$ gives rise to a transformation groupoid $X \rtimes G$.

Proposition (disconnected partial actions of G) $\stackrel{\sim}{\leftrightarrow}$ (actions of $B_G^{\varepsilon} \rtimes G$).

3/12

The link between partial actions and groupoid actions

The transformation groupoid $B_G^e \rtimes G$ consists of all arrows of the form

$$gA \stackrel{g}{\longleftarrow} A \quad (g \in G, A \subseteq G, e, g^{-1} \in A).$$

Proposition (disconnected partial actions of *G*) $\stackrel{\sim}{\leftrightarrow}$ (actions of $B_G^{\varepsilon} \rtimes G$). **Idea of proof** Given a partial action $((D_g)_g, (\theta_g)_g)$ on a space *X*, define

•
$$\pi: X \to B_G^e$$
 by $x \mapsto \{g \in G : x \in D_{g^{-1}}\}$

•
$$(gA \leftarrow g A) \cdot x := \theta_g(x)$$
, where $A = \pi(x)$ implies $g^{-1} \in A$ and $x \in D_{g^{-1}} = \text{Dom}(\theta_g)$.

Corollary Partial representations of G (:=disconnected partial actions on vector spaces) carry a monoidal product \boxtimes , where

$$V \boxtimes W = \bigoplus_{A \in B_{G}^{e}} (V_{A} \otimes W_{A}), \quad V_{A} = \left(\bigcap_{g \in A} D_{g}\right) \cap \left(\bigcap_{g \notin A} D_{g}^{\perp}\right), W_{A} = \dots$$

$$4/12$$

Partial actions of Hopf algebras

Partial representations of Hopf algebras

Definition A *partial representation* of a *Hopf algebra H* on a vector space V is a linear map $\pi: H \to \text{End}(V)$ such that $\pi(1_H) = \text{id}_V$ and

- $\pi(kh_{(1)})\pi(S(h_{(2)})) = \pi(k)\pi(h_{(1)})\pi(S(h_{(2)})),$ $\pi(S(k_{(1)}))\pi(k_{(2)}h) = \pi(S(k_{(1)}))\pi(k_{(2)})\pi(h)$ (h, k \in H);
- as above with S replaced by S^{-1} .

Example (partial rep.s of G) $\stackrel{\sim}{\leftrightarrow}$ (partial rep.s of the group algebra kG).

Theorem (Alves-Batista-Vercruysse '15)

- There exists an algebra *H*_{par} whose representations correspond bijectively to partial representations of *H*.
- $H_{\text{par}} \cong A \# H$ for a subalgebra $A \subset H_{\text{par}}$ with a partial action of H.
- *H*_{par} is a *Hopf algebroid*.
- Partial representations of *H* carry a monoidal product.

The partial Bernoulli shift of a discrete quantum group

Partial coactions of C*-bialgebras

Definition A *partial coaction* of a C^{*}-bialgebra (\mathcal{H}, Δ) on a C^{*}-algebra \mathcal{A} is a *-homomorphism $\delta: \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{H})$ such that

- $\delta(\mathcal{A})(1 \otimes \mathcal{H}) \subseteq \mathcal{A} \otimes \mathcal{H}$,
- δ extends to a strict *-homomorphism from $M(\mathcal{A})$ to $M(\mathcal{A} \otimes \mathcal{H})$,
- $(\delta \otimes id)(\delta(a)) = (\delta(1) \otimes 1)(id \otimes \Delta)(\delta(a))$ for all $a \in A$.

Example Given a coaction on a C^* -algebra \mathcal{B} and an ideal $\mathcal{A} \subseteq \mathcal{B}$, the coaction restricts to a partial coaction on \mathcal{A} .

Kraken, Quast, T. Partial actions of C*-quantum groups I: Restriction and Globalization. *to appear in Banach J. Math. Analysis*. arXiv:1703.06546.

Theorem (Kraken, Quast, T.) Let (\mathcal{H}, Δ) be a *C*^{*}-quantum group, where \mathcal{H} is *nuclear*. Then every *regular* partial coaction of (\mathcal{H}, Δ) is the restriction of a coaction, and there exists a unique *minimal* choice.

Let \mathbb{G} be a *discrete quantum group*, given by $(C_0(\mathbb{G}), \Delta)$. Then

- $C_0(\mathbb{G}) \cong \bigoplus_{\alpha} M_{n_{\alpha}}(\mathbb{C})$, where the sum is taken over $\alpha \in Irr(\hat{\mathbb{G}})$
- $\mathcal{O}(\mathbb{G}) := \bigoplus_{\alpha}^{\mathsf{alg}} M_n(\mathbb{C})$ is a multiplier Hopf algebra
- $\mathbb{CG} := \bigoplus_{\alpha}^{\mathsf{alg}} \mathsf{Hom}(M_n(\mathbb{C}), \mathbb{C})$ is a Hopf algebra
- $C_0(\mathbb{G})$ has a counit $\varepsilon: C_0(\mathbb{G}) \to \mathbb{C}$.

Examples

• If δ is a partial coaction of $(C_0(\mathbb{G}), \Delta)$ on \mathcal{A} s.t. $(\mathrm{id} \otimes \varepsilon)\delta = \mathrm{id}$, then $h \cdot a := (\mathrm{id} \otimes h)(\delta(a)) \quad (a \in \mathcal{A}, h \in \mathbb{CG}).$

defines a partial action of $\mathbb{C}\mathbb{G}$ on $\mathcal{A}.$

• If $\mathbb{G} = G$ is a classical discrete group, counital partial coactions of $(C_0(G), \Delta)$ correspond to disconnected partial actions of *G*. _{7/12}

The Bernoulli shift of a discrete quantum group I

For a group G, the space $\mathcal{P}(G)$ comes with a tautological subset $\{(A,g): g \in A\} \subset \mathcal{P}(G) \times G.$

For \mathbb{G} , we define a quantum space $\mathbb{B}_{\mathbb{G}}$ in terms of a projection $p \in M(C(\mathbb{B}_{\mathbb{G}}) \otimes C_0(\mathbb{G})).$

Write $C_0(\mathbb{G}) \cong \bigoplus_{\alpha} M_{n_{\alpha}}(\mathbb{C})$ and choose matrix units $e_{ij}^{\alpha} \in C_0(\mathbb{G})$.

Definition The *quantum Bernoulli space* $\mathbb{B}_{\mathbb{G}}$ of \mathbb{G} is given by the universal unital C^* -algebra $C(\mathbb{B}_{\mathbb{G}})$ with generators p_{ij}^{α} such that

$$p \coloneqq \sum_{\alpha,i,j} p_{ij}^{\alpha} \otimes e_{ij}^{\alpha}$$

is a projection and

$$[p \otimes 1, (\operatorname{id} \otimes \Delta)(p)] = 0.$$

Example If $\mathbb{G} = G$, then $p = \sum p^g \otimes \delta_g$, all p^g commute, and $\mathbb{B}_G \cong \mathcal{P}(G)$.

Denote by $p \in M(C(\mathbb{B}_{\mathbb{G}}) \otimes C_0(\mathbb{G}))$ the *universal projection* as before.

Theorem (T.) There exist

• a coaction $\delta: C(\mathbb{B}_{\mathbb{G}}) \to M(C(\mathbb{B}_{\mathbb{G}}) \otimes C_0(\mathbb{G}))$ such that

 $(\delta \otimes id)(p) = (id \otimes \Delta)(p)$

• a coaction $\hat{\delta}: C(\mathbb{B}_{\mathbb{G}}) \to M(C(\mathbb{B}_{\mathbb{G}}) \otimes C_0^r(\hat{\mathbb{G}}))$ such that

 $(\hat{\delta} \otimes id)(p) = (id \otimes ad)(p)$

and $(C(\mathbb{B}_{\mathbb{G}}), \delta, \hat{\delta})$ is a braided-commutative Yetter-Drinfeld C^{*}-algebra.

Lemma With the notation as above,

- $p_{\varepsilon} := (id \otimes \varepsilon)(p) \in C(\mathbb{B}_{\mathbb{G}})$ is a central projection;
- δ restricts to a partial coaction δ_{ε} on $C(\mathbb{B}^{\varepsilon}_{\mathbb{G}}) \coloneqq p_{\varepsilon}C(\mathbb{B}_{\mathbb{G}})$.

Definition We call $(C(\mathbb{B}^{\varepsilon}_{\mathbb{G}}), \delta_{\varepsilon})$ the *partial Bernoulli shift* of \mathbb{G} . _{9/12}

Connection to the construction of Alves-Batista-Vercruysse

- The unital dense *-subalgebra $\mathcal{O}(\mathbb{B}_{\mathbb{G}}) \subseteq C(\mathbb{B}_{\mathbb{G}})$ generated by the p_{ij}^{α} is a braided-commutative Yetter-Drinfeld algebra over $\mathcal{O}(\hat{\mathbb{G}})$.
- $\Rightarrow \mathcal{O}(\mathbb{B}_{\mathbb{G}}) \# \mathcal{O}(\hat{\mathbb{G}})$ is a Hopf algebroid, see:

T. Brzeziński, G. Militaru. Bialgebroids, \times_A -bialgebras and duality. J. Algebra, 251(1):279–294, 2002.

• $\mathcal{O}(\mathbb{B}_{\mathbb{G}}) \# \mathcal{O}(\hat{\mathbb{G}})$ is isomorphic to the Hopf algebroid $\mathcal{O}(\hat{\mathbb{G}})_{par}$:

Proof:

- The natural map $\mathcal{O}(\hat{\mathbb{G}}) \to \mathcal{O}(\mathbb{B}_{\mathbb{G}}) \# \mathcal{O}(\hat{\mathbb{G}})$ is a partial representation and extends to a *-homomorphism $\Phi: \mathcal{O}(\hat{\mathbb{G}})_{par} \to \mathcal{O}(\mathbb{B}_{\mathbb{G}}) \# \mathcal{O}(\hat{\mathbb{G}}).$
- $\mathcal{O}(\hat{\mathbb{G}})_{par} \cong A \# \mathcal{O}(\hat{\mathbb{G}})$ for an A with a partial action of $\mathcal{O}(\hat{\mathbb{G}})$ which gives an equivariant $\psi: \mathcal{O}(\mathbb{B}_{\mathbb{G}}) \to A$, and $\Psi := \psi \#$ id is inverse to Φ .

The example $\mathbb{G} = \widehat{S_3}$

Recall:
$$C(\mathbb{B}_{\mathbb{G}})$$
 is generated by the slices of $p \in M(C(\mathbb{B}_{\mathbb{G}}) \otimes C(\mathbb{G}))$ s.t.

$$[(\operatorname{id} \otimes \Delta)(p), p \otimes 1] = 0. \qquad (†)$$
Now $C(\mathbb{G}) = \mathbb{C}S^3 \xrightarrow{\cong} \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C})$, where $(1, 2) \equiv (1, -1, \binom{1}{1})$.
Write $p \equiv (p^{\varepsilon}, p^{\sigma}, \binom{a \ b}{b^* \ d}) \in C(\mathbb{B}_{\mathbb{G}}) \oplus C(\mathbb{B}_{\mathbb{G}}) \oplus M_2(C(\mathbb{B}_{\mathbb{G}}))$. Then $(†) \Leftrightarrow$
(1) $(\operatorname{id} \otimes \varepsilon \otimes \operatorname{id})(†)$, which means $[p^{\varepsilon} \otimes 1, p] = 0$, so that p^{ε} is central
(2) $(\operatorname{id} \otimes \operatorname{id} \otimes \varepsilon)(†)$, which means $[p, p] = 0$
(3) $(\operatorname{id} \otimes \sigma \otimes \rho)(†)$, which means, as $(\sigma \otimes \rho)\Delta = \operatorname{Ad}_R \circ \rho$ with $R = \binom{1 \ 0}{0 \ -1}$,
 $\left[\binom{p^{\sigma}}{p^{\sigma}}, \binom{a \ -b}{(a^{b} \ d)}\right] = 0$, that is, p^{σ} is central as well
(4) $(\operatorname{id} \otimes \rho \otimes \rho)(†)$ means that, after decomposing $(\rho \otimes \rho)\Delta \sim \varepsilon \oplus \sigma \oplus \rho$,
 $\left[\binom{a \ a \ b \ b}{b^* \ d \ d}, \binom{d \ p^+ \ p^- \ b^*}{a}\right] = 0$, where $p^{\pm} = \frac{1}{2}(p^{\varepsilon} \pm p^{\sigma})$ is central,
which means $[a, d] = 0, b^2 = 0, b = ba = db, p^-a = p^-d.$

Plans

- Study $C(\mathbb{B}^{\varepsilon}_{\mathbb{G}})$, e.g. if \mathbb{G} is the dual of a finite non-abelian group.
- Equip C(B[€]_G) ⋊ C₀(G) with the structure of a C*-quantum groupoid. For this, we can use the von Neumann algebraic results in: Enock and T. Measured quantum transformation groupoids. J. Noncommut. Geom., 10(3):1143–1214, 2016.
- Relate partial representations of \mathbb{G} to rep.s of $C(\mathbb{B}^{\varepsilon}_{\mathbb{G}}) \rtimes C_0(\mathbb{G})$ and thus obtain a monoidal product on partial representations of \mathbb{G} .
- Extend the notion of a partial coaction to cover partial actions of groups on spaces that are *not* disconnected.