Decidability questions for Cuntz-Krieger algebras and their underlying dynamics

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

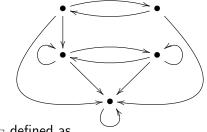
August 4, 2017



Outline

2 Graph C^* -algebras

To a finite graph $E = (E_0, E_1, r, s)$ such as



we associate X_E defined as

$$\mathsf{X}_E = \{ (e_n) \in (E_0)^{\mathbb{Z}} \mid r(e_n) = s(e_{n+1}) \}$$

Note that X_E is closed in the topology of $(E_0)^{\mathbb{Z}}$ and comes equipped with a shift map $\sigma : X_E \to X_E$ which is a homeomorphism. We call X_E a **shift space** (of finite type) over the **alphabet** E_0 .

Definition

The suspension flow SX of a shift space X is $X \times \mathbb{R}/\sim$ with

 $(x,t) \sim (\sigma(x), t-1)$

Note that SX has a canonical \mathbb{R} -action.

Definitions

Let X and Y be shift spaces.

- X is conjugate to Y (written $X \simeq Y$) if there is a shift-invariant homeomorphism $\varphi : X \to Y$.
- X is flow equivalent to Y (written $X \sim_{\rm FE} Y$) if there is an orientation-preserving homeomorphism $\psi : SX \to SY$

Question

Are these notions decidable for shifts of finite type?

Question

Are these notions decidable for shifts of finite type?

Theorem (Boyle-Steinberg)

Flow equivalence is decidable among shifts of finite type.

Definition

Let $A \in M_n(\mathbb{Z}_+)$ and $B \in M_m(\mathbb{Z}_+)$ be given. We say that A is elementary equivalent to B if there exist $D \in M_{n \times m}(\mathbb{Z}_+)$ and $E \in M_{m \times n}(\mathbb{Z}_+)$ so that

$$A = DE \qquad B = ED.$$

The smallest equivalence relation on $\bigcup_{n\geq 1} M_n(\mathbb{Z}_+)$ is called strong shift equivalence.

Let G_A be the graph with adjacency matrix A. We abbreviate $X_A = X_{G_A}$.

Theorem (Williams)

 $X_A \simeq X_B$ if and only if A is strong shift equivalent to B.

Definition

We say that that A and B are **shift equivalent** of lag ℓ when there exist $D \in M_{n \times m}(\mathbb{Z}_+)$ and $E \in M_{m \times n}(\mathbb{Z}_+)$ so that

$$A^{\ell} = DE \qquad B^{\ell} = ED \qquad AD = DB \qquad EA = BE.$$

Strong shift equivalence implies shift equivalence.

Theorem (Kim-Roush)

Shift equivalence is decidable.

It took decades to disprove

William's conjecture

Shift equivalence coincides with strong shift equivalence.

and indeed it is a prominent open question if conjugacy is decidable for shifts of finite type.

Shifts of finite type

4 Moves

Singular and regular vertices

Definitions

Let E be a graph and $v \in E^0$.

- v is a *sink* if $|s^{-1}(\{v\})| = 0$
- v is an *infinite emitter* if $|s^{-1}(\{v\})| = \infty$

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is not singular.

Graph algebras

Definition

The graph C^* -algebra $C^*(E)$ is given as the universal C^* -algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges subject to the Cuntz-Krieger relations

•
$$s_e^* s_e = p_{r(e)}$$

• $s_e s_e^* \le p_{s(e)}$
• $p_v = \sum_{s(e)=v} s_e s_e^*$ for every regular e

 $C^*(E)$ is unital precisely when E has finitely many vertices.

Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action $\mathbb{T} \mapsto \operatorname{Aut}(C^*(E))$

Definition

$$\mathfrak{D}_E = \overline{\operatorname{span}}\{s_\alpha s_\alpha^* \mid \alpha \text{ path of } E\}$$

Note that \mathfrak{D}_E is commutative and that

$$\mathfrak{D}_E \subseteq \mathfrak{F}_E = \{ a \in C^*(E) \mid \forall z \in \mathbb{T} : \gamma_z(a) = a \}$$

 \mathfrak{D}_E has spectrum X_A when $E = E_A$ arises from an essential and finite matrix A. This fundamental case was studied by Cuntz and Krieger, using the notation $\mathcal{O}_A = C^*(E_A)$.

Theorem (E-Restorff-Ruiz-Sørensen)

*-isomorphism and stable *-isomorphism of unital graph C^* -algebras is decidable.

Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)

 $(C^*(E_A)\otimes \mathbb{K},\mathfrak{D}\otimes c_0)\simeq (C^*(E_B)\otimes \mathbb{K},\mathfrak{D}\otimes c_0) \Longleftrightarrow \mathsf{X}_A\sim_{\mathrm{FE}}\mathsf{X}_B$

Theorem (Carlsen-Rout, Matsumoto)

 $(C^*(E_A) \otimes \mathbb{K}, \mathfrak{D} \otimes c_0, \gamma \otimes \mathrm{Id}) \simeq (C^*(E_B) \otimes \mathbb{K}, \mathfrak{D} \otimes c_0, \gamma \otimes \mathrm{Id})$ \longleftrightarrow $\mathsf{X}_A \simeq \mathsf{X}_B$

Theorem (E-Restorff-Ruiz-Sørensen)

*-isomorphism and stable *-isomorphism of Cuntz-Krieger algebras is decidable.

Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)

$$(\mathcal{O}_A \otimes \mathbb{K}, \mathfrak{D} \otimes c_0) \simeq (\mathcal{O}_B \otimes \mathbb{K}, \mathfrak{D} \otimes c_0) \Longleftrightarrow \mathsf{X}_A \sim_{\mathsf{FE}} \mathsf{X}_B$$

Theorem (Carlsen-Rout, Matsumoto)

$$(\mathcal{O}_A \otimes \mathbb{K}, \mathfrak{D} \otimes c_0, \gamma \otimes \mathrm{Id}) \simeq (\mathcal{O}_B \otimes \mathbb{K}, \mathfrak{D} \otimes c_0, \gamma \otimes \mathrm{Id})$$

$$\longleftrightarrow$$

$$\mathsf{X}_A \simeq \mathsf{X}_B$$

Shifts of finite type

2 Graph C^* -algebras

Definition

With $\mathsf{x},\mathsf{y},\mathsf{z}\in\{0,1\}$ we write

$$E \xrightarrow{xyz} F$$

when there exists a *-isomorphism $\varphi: C^*(E)\otimes \mathbb{K} \to C^*(F)\otimes \mathbb{K}$ with additionally satisfies

- $\varphi(1_{C^*(E)}\otimes e_{11})=1_{C^*(F)}\otimes e_{11}$ when $\mathsf{x}=1$
- $\varphi \circ (\gamma \otimes \mathrm{Id}) = (\gamma \otimes \mathrm{Id}) \circ \varphi$ when y = 1
- $\varphi(\mathfrak{D}_E \otimes c_0) = \mathfrak{D}_F \otimes c_0$ when z = 1.

Theorem (E-Restorff-Ruiz-Sørensen)

 $E \xrightarrow{\times 0z} F$ is decidable.

Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)

$$E_A \xrightarrow{001} E_B \iff \mathsf{X}_A \sim_{\mathrm{FE}} \mathsf{X}_B$$

Theorem (Carlsen-Rout, Matsumoto)

$$E_A \xrightarrow{011} E_B \iff \mathsf{X}_A \simeq \mathsf{X}_B$$

Shifts of finite type

2 Graph C^* -algebras

Moves

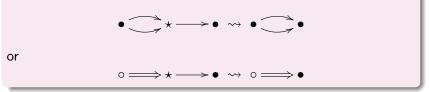
Move (R)

Reduce a configuration with a transitional regular vertex, as

or

Move (R)

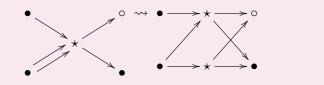
Reduce a configuration with a transitional regular vertex, as



Moves

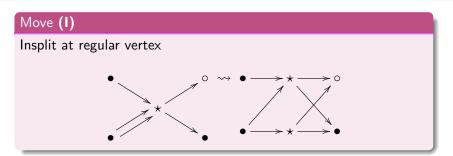
Move (I)

Insplit at regular vertex

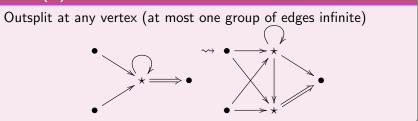


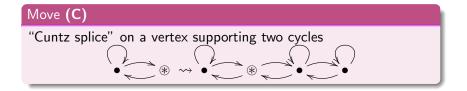
Move (O)

Moves



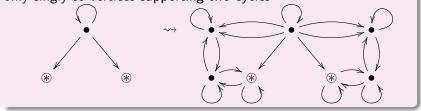
Move **(0)**





Move (P)

"Butterfly move" on a vertex supporting a single cycle emitting only singly to vertices supporting two cycles



Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^{\ast}(E)$ and $C^{\ast}(F)$ be unital graph algebras. Then the following are equivalent

(i) $C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

(ii) There is a finite sequence of moves of type(S),(R),(O),(I),(C),(P)

and their inverses, leading from E to F.