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Local triviality of principal bundles

Definition (H. Cartan)

A principal bundle is a quadruple (X,π,M,G) such that

1 (X,π,M) is a bundle and G is a topological group acting
continuously on X from the right,

2 the action of G on X is free and proper,
3 π(x) = π(y) if and only if ∃g ∈ G : y = xg (the fibers are the

orbits of G),
4 the induced map X/G→M is a homeomorphism.

Definition
A principal bundle (X,π,M,G) is said to be locally trivial,
if for every p ∈M there exists a neighbourhood U
and a G-equivariant homeomorphism ϕ : U ×G→ π−1(U)
such that π ◦ ϕ : U ×G→ U is the canonical projection.
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cpc ⊥ machinery

Definition
Let A and B be C*-algebras, and let ϕ : A→ B be a completely
positive map. We say that ϕ has order zero if for every a and b in
A, we have ϕ(a) ⊥ ϕ(b) whenever a ⊥ b.

Theorem (Winter-Zacharias)

Let A and B be C*-algebras. There is a bijection between
completely positive contractive order zero maps A→ B and
*-homomorphisms C0((0, 1])⊗A→ B.

When A and B are unital there is a bijection between cpc ⊥ maps
and unital *-homomorphims CA→ B. This result extends to
G-equivariant maps. Winter and Zacharias developed a functional
calculus for c.p.c. ⊥ maps as well.
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Local triviality for actions of compact quantum groups

Definition
Let A be a unital C*-algebra with an action δ of a compact
quantum group G. For d ≥ 0, we say that the system (A, G, δ) has
triviality dimension at most d, written dimG

triv(A) ≤ d, if there exist
completely positive contractive equivariant order zero maps
ϕ0, . . . , ϕd : C(G)→ A satisfying

∑d
j=0 ϕj(1) = 1.

Let dimG
triv(A) = 0. Then we have an equivariant c.p.c. order zero

map ϕ : C(G)→ A and such that ϕ(1) = 1. One can prove that
such a ϕ is a unital *-homomorphism and therefore (A,G, δ) is
a trivial bundle.
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Reformulation of classical local triviality

Definition (Schwarz genus)

The Schwarz genus of a free G-space X, denoted by gG(X),
is the smallest number n such that X can be covered with open
G-invariant subsets U0, . . . , Un with the property that for every
0 ≤ i ≤ n there exists a G-equivariant map Ui → G.

When X and G compact Hausdorff gG(X) <∞ iff X → X/G is
locally trivial.

Definition (G-index)

Let X be a free G-space. We define the G-index of X by

indG(X) := min{n ≥ 0 : ∃G−map X → EnG},

where EnG := G ∗ . . . ∗G︸ ︷︷ ︸
n+1

.
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Reformulation of classical local triviality (II)

Theorem
Let X be a compact Hausdorff space equipped with a free action of
a compact Hausdorff group G. Then

gG(X) = indG(X) = dimG
triv(C(X))

Proof outline. For the first equality, the tricky part is to construct
a map X → EnG from a local trivialization. This can be done
using the partion of unity and local sections.
For the second equality, one need to use the fact EnG is a
subspace of CGn+1 and then use the Winter-Zacharias theorem for
c.p.c. order zero maps.
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Local triviality implies freeness

Definition (D. Ellwood)

Let δ : A→ A⊗ C(G) be an action of a compact quantum group
G on a unital C*-algebra A. We say that δ is free iff
{(x⊗ 1)δ(y) : x, y ∈ A}cls = A⊗ C(G).

Theorem
Let A be a unital C*-algebra with an action δ of a compact
quantum group G and let dimG

triv(A) <∞. Then δ is free.

Proof. Set B = {(A⊗ 1)δ(A)}cls. To prove that B = A⊗C(G) it
suffices to show that 1A ⊗ x belongs to B for any x ∈ C(G).
Of course, ∆ : C(G)→ C(G)⊗ C(G) is free by definition and for
a fixed x ∈ C(G) we have

1C(G) ⊗ x ≈
ε

m∑
k=1

(yk ⊗ 1C(G))∆(zk).
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Local triviality implies freeness (II)

Let dimG
triv(A) = d.

Then there exist c.p.c. order zero G-maps
ϕ0, . . . , ϕd : C(G)→ A, such that

∑
i ϕi(1) = 1. Let

ϕ̃i = ϕi ⊗ idC(G). Then

1A ⊗ x =
d∑
j=0

ϕj(1C(G))⊗ x =
d∑
j=0

ϕ̃j(1C(G) ⊗ x)

≈ε
d∑
j=0

m∑
k=1

ϕ̃j((yk ⊗ 1C(G))∆(zk))

=
d∑
j=0

m∑
k=1

(ϕ
1/2
j (yk)⊗ 1C(G))δ(ϕ

1/2
j (zk)),

where we used the functional calculus for c.p.c. order zero maps
and the equivariance of ϕj ’s.
This shows that 1A ⊗ x belongs to B, and hence B = A⊗ C(G)
and we conclude that δ is free.
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where we used the functional calculus for c.p.c. order zero maps
and the equivariance of ϕj ’s.

This shows that 1A ⊗ x belongs to B, and hence B = A⊗ C(G)
and we conclude that δ is free.



Local triviality implies freeness (II)
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Borsuk-Ulam type theorems

Theorem (Borsuk-Ulam)

Let n be a positive natural number. There is no Z/2Z-equivariant
continuous map f : Sn ∗ Z/2Z→ Sn.

Conjecture (Baum-Da̧browski-Hajac)

Let X be a compact Hausdorff topological space equipped with a
continuous free action of a non-trivial compact Hausdorff group G.
Then, for the diagonal action of G on X ∗G, there does not exists
a G-equivariant continuous map f : X ∗G→ X.

Conjecture (Baum, Da̧browski, Hajac)

Let A be a unital C*-algebra with a free action δ : A→ A⊗ C(G)
of a non-trivial compact quantum group G. Then there is no
G-equivariant *-homomorphism A→ A~δC(G).
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What do we know?

Theorem (Edwards-Bestvina)

Let X be a compact Hausdorff space equipped with a free action of
a compact Hausdorff group G. Then, if the bundle X → X/G is
locally trivial, there is no G-equivariant map X ∗G→ X.

Theorem (B. Passer)

Let A be a C*-algebra and let G be a compact Hausdorff group
with torsion. Then there is no G-equivariant map A→ A~ C(G).

Theorem (Da̧browski, Hajac, Neshveyev)

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group G. Then, if C(G) admits a character that
is not convolution idempotent, there is no G-equivariant
*-homomorphism A→ A~δ C(G).
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Borsuk-Ulam type result for locally trivial actions

Proposition

Let G be a compact quantum group, let A be a unital C*-algebra,
and let δ be an action of G on A. Let I be an G-invariant ideal in
A, and denote by δ the action induced by δ on the quotient A/I.
Then

dimG
triv(A/I) ≤ dimG

triv(A).

Theorem (Borsuk-Ulam type)

Let A be a unital C*-algebra with an action of a compact
Hausdorff group G and let dimG

triv(A) <∞. Then there is no
G-equivariant map A→ A~ C(G).
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