Local triviality and Borsuk-Ulam type theorems for actions of compact quantum groups

Mariusz Tobolski (IMPAN) joint work with E. Gardella, P. M. Hajac and J. Wu

Penn State, September 2017

Definition (H. Cartan)

Definition (H. Cartan)

A principal bundle is a quadruple (X,π,M,G) such that

• (X, π, M) is a bundle and G is a topological group acting continuously on X from the right,

Definition (H. Cartan)

- **2** the action of G on X is free and proper,

Definition (H. Cartan)

- $(X,\pi,M) \text{ is a bundle and } G \text{ is a topological group acting continuously on } X \text{ from the right,} \\$
- **2** the action of G on X is free and proper,
- ● $\pi(x) = \pi(y)$ if and only if $\exists g \in G : y = xg$ (the fibers are the orbits of *G*),

Definition (H. Cartan)

- $(X, \pi, M) \text{ is a bundle and } G \text{ is a topological group acting continuously on } X \text{ from the right,}$
- 2 the action of G on X is free and proper,
- ● $\pi(x) = \pi(y)$ if and only if $\exists g \in G : y = xg$ (the fibers are the orbits of *G*),
- \bigcirc the induced map $X/G \rightarrow M$ is a homeomorphism.

Definition (H. Cartan)

A principal bundle is a quadruple (X,π,M,G) such that

- $(X, \pi, M) \text{ is a bundle and } G \text{ is a topological group acting continuously on } X \text{ from the right,}$
- $\ensuremath{ 2 \ }$ the action of G on X is free and proper,
- ● $\pi(x) = \pi(y)$ if and only if $\exists g \in G : y = xg$ (the fibers are the orbits of *G*),
- \bigcirc the induced map $X/G \rightarrow M$ is a homeomorphism.

Definition

A principal bundle (X, π, M, G) is said to be *locally trivial*, if for every $p \in M$ there exists a neighbourhood Uand a G-equivariant homeomorphism $\varphi : U \times G \to \pi^{-1}(U)$ such that $\pi \circ \varphi : U \times G \to U$ is the canonical projection.

Let A and B be C*-algebras, and let $\varphi : A \to B$ be a completely positive map. We say that φ has *order zero* if for every a and b in A, we have $\varphi(a) \perp \varphi(b)$ whenever $a \perp b$.

Let A and B be C*-algebras, and let $\varphi : A \to B$ be a completely positive map. We say that φ has *order zero* if for every a and b in A, we have $\varphi(a) \perp \varphi(b)$ whenever $a \perp b$.

Theorem (Winter-Zacharias)

Let A and B be C*-algebras. There is a bijection between completely positive contractive order zero maps $A \to B$ and *-homomorphisms $C_0((0,1]) \otimes A \to B$.

Let A and B be C*-algebras, and let $\varphi : A \to B$ be a completely positive map. We say that φ has *order zero* if for every a and b in A, we have $\varphi(a) \perp \varphi(b)$ whenever $a \perp b$.

Theorem (Winter-Zacharias)

Let A and B be C*-algebras. There is a bijection between completely positive contractive order zero maps $A \to B$ and *-homomorphisms $C_0((0,1]) \otimes A \to B$.

When A and B are unital there is a bijection between cpc \perp maps and unital *-homomorphims $CA \rightarrow B$.

Let A and B be C*-algebras, and let $\varphi : A \to B$ be a completely positive map. We say that φ has *order zero* if for every a and b in A, we have $\varphi(a) \perp \varphi(b)$ whenever $a \perp b$.

Theorem (Winter-Zacharias)

Let A and B be C*-algebras. There is a bijection between completely positive contractive order zero maps $A \to B$ and *-homomorphisms $C_0((0,1]) \otimes A \to B$.

When A and B are unital there is a bijection between cpc \perp maps and unital *-homomorphims $CA \rightarrow B$. This result extends to G-equivariant maps.

Let A and B be C*-algebras, and let $\varphi : A \to B$ be a completely positive map. We say that φ has *order zero* if for every a and b in A, we have $\varphi(a) \perp \varphi(b)$ whenever $a \perp b$.

Theorem (Winter-Zacharias)

Let A and B be C*-algebras. There is a bijection between completely positive contractive order zero maps $A \to B$ and *-homomorphisms $C_0((0,1]) \otimes A \to B$.

When A and B are unital there is a bijection between cpc \perp maps and unital *-homomorphims $CA \rightarrow B$. This result extends to G-equivariant maps. Winter and Zacharias developed a functional calculus for c.p.c. \perp maps as well.

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} . For $d \geq 0$, we say that the system (A, \mathbb{G} , δ) has *triviality dimension at most* d, written $\dim_{\mathrm{triv}}^{\mathbb{G}}(A) \leq d$, if there exist completely positive contractive equivariant order zero maps $\varphi_0, \ldots, \varphi_d \colon C(\mathbb{G}) \to A$ satisfying $\sum_{j=0}^d \varphi_j(1) = 1$.

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} . For $d \geq 0$, we say that the system (A, \mathbb{G} , δ) has *triviality dimension at most* d, written $\dim_{\mathrm{triv}}^{\mathbb{G}}(A) \leq d$, if there exist completely positive contractive equivariant order zero maps $\varphi_0, \ldots, \varphi_d \colon C(\mathbb{G}) \to A$ satisfying $\sum_{j=0}^d \varphi_j(1) = 1$.

Let $\dim_{\operatorname{triv}}^{\mathbb{G}}(A) = 0.$

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} . For $d \geq 0$, we say that the system (A, \mathbb{G} , δ) has *triviality dimension at most* d, written $\dim_{\mathrm{triv}}^{\mathbb{G}}(A) \leq d$, if there exist completely positive contractive equivariant order zero maps $\varphi_0, \ldots, \varphi_d \colon C(\mathbb{G}) \to A$ satisfying $\sum_{j=0}^d \varphi_j(1) = 1$.

Let $\dim_{\operatorname{triv}}^{\mathbb{G}}(A) = 0$. Then we have an equivariant c.p.c. order zero map $\varphi : C(\mathbb{G}) \to A$ and such that $\varphi(1) = 1$.

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} . For $d \geq 0$, we say that the system (A, \mathbb{G} , δ) has *triviality dimension at most* d, written $\dim_{\mathrm{triv}}^{\mathbb{G}}(A) \leq d$, if there exist completely positive contractive equivariant order zero maps $\varphi_0, \ldots, \varphi_d \colon C(\mathbb{G}) \to A$ satisfying $\sum_{j=0}^d \varphi_j(1) = 1$.

Let $\dim_{\mathrm{triv}}^{\mathbb{G}}(A)=0.$ Then we have an equivariant c.p.c. order zero map $\varphi:C(\mathbb{G})\to A$ and such that $\varphi(1)=1.$ One can prove that such a φ is a unital *-homomorphism and therefore (A,\mathbb{G},δ) is a trivial bundle.

Definition (Schwarz genus)

The Schwarz genus of a free G-space X, denoted by $g_G(X)$, is the smallest number n such that X can be covered with open G-invariant subsets U_0, \ldots, U_n with the property that for every $0 \le i \le n$ there exists a G-equivariant map $U_i \to G$.

Definition (Schwarz genus)

The Schwarz genus of a free G-space X, denoted by $g_G(X)$, is the smallest number n such that X can be covered with open G-invariant subsets U_0, \ldots, U_n with the property that for every $0 \le i \le n$ there exists a G-equivariant map $U_i \to G$.

When X and G compact Hausdorff $g_G(X) < \infty$ iff $X \to X/G$ is locally trivial.

Definition (Schwarz genus)

The Schwarz genus of a free G-space X, denoted by $g_G(X)$, is the smallest number n such that X can be covered with open G-invariant subsets U_0, \ldots, U_n with the property that for every $0 \le i \le n$ there exists a G-equivariant map $U_i \to G$.

When X and G compact Hausdorff $g_G(X) < \infty$ iff $X \to X/G$ is locally trivial.

Definition (G-index)

Let X be a free G-space. We define the G-index of X by

$$ind_G(X) := \min\{n \ge 0 : \exists G - map \ X \to E_nG\},\$$

where
$$E_nG := \underbrace{G * \ldots * G}_{n+1}$$
.

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then

$$g_G(X) = ind_G(X) = dim_{triv}^G(C(X))$$

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then

$$g_G(X) = ind_G(X) = dim_{triv}^G(C(X))$$

Proof outline.

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then

$$g_G(X) = ind_G(X) = dim_{triv}^G(C(X))$$

Proof outline. For the first equality, the tricky part is to construct a map $X \to E_n G$ from a local trivialization. This can be done using the partial of unity and local sections.

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then

$$g_G(X) = ind_G(X) = dim_{triv}^G(C(X))$$

Proof outline. For the first equality, the tricky part is to construct a map $X \to E_n G$ from a local trivialization. This can be done using the partion of unity and local sections. For the second equality, one need to use the fact $E_n G$ is a subspace of CG^{n+1} and then use the Winter-Zacharias theorem for c.p.c. order zero maps.

Let $\delta : A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y) : x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Let $\delta: A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y): x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Let $\delta: A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y): x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Proof.

Let $\delta: A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y): x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Proof. Set $B = \{(A \otimes 1)\delta(A)\}^{cls}$.

Let $\delta : A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y) : x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Proof. Set $B = \{(A \otimes 1)\delta(A)\}^{cls}$. To prove that $B = A \otimes C(\mathbb{G})$ it suffices to show that $1_A \otimes x$ belongs to B for any $x \in C(\mathbb{G})$.

Let $\delta: A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y): x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Proof. Set $B = \{(A \otimes 1)\delta(A)\}^{cls}$. To prove that $B = A \otimes C(\mathbb{G})$ it suffices to show that $1_A \otimes x$ belongs to B for any $x \in C(\mathbb{G})$. Of course, $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ is free by definition

Let $\delta: A \to A \otimes C(\mathbb{G})$ be an action of a compact quantum group \mathbb{G} on a unital C*-algebra A. We say that δ is free iff $\{(x \otimes 1)\delta(y): x, y \in A\}^{cls} = A \otimes C(\mathbb{G}).$

Theorem

Let A be a unital C*-algebra with an action δ of a compact quantum group \mathbb{G} and let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) < \infty$. Then δ is free.

Proof. Set $B = \{(A \otimes 1)\delta(A)\}^{cls}$. To prove that $B = A \otimes C(\mathbb{G})$ it suffices to show that $1_A \otimes x$ belongs to B for any $x \in C(\mathbb{G})$. Of course, $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ is free by definition and for a fixed $x \in C(\mathbb{G})$ we have

$$1_{C(\mathbb{G})} \otimes x \approx \sum_{\varepsilon}^{m} (y_k \otimes 1_{C(\mathbb{G})}) \Delta(z_k).$$

Let $dim_{\operatorname{triv}}^{\mathbb{G}}(A) = d$.

Let $dim_{\text{triv}}^{\mathbb{G}}(A) = d$. Then there exist c.p.c. order zero \mathbb{G} -maps $\varphi_0, \ldots, \varphi_d : C(\mathbb{G}) \to A$, such that $\sum_i \varphi_i(1) = 1$.

Let $dim_{\mathrm{triv}}^{\mathbb{G}}(A) = d$. Then there exist c.p.c. order zero \mathbb{G} -maps $\varphi_0, \ldots, \varphi_d : C(\mathbb{G}) \to A$, such that $\sum_i \varphi_i(1) = 1$. Let $\widetilde{\varphi}_i = \varphi_i \otimes id_{C(\mathbb{G})}$.

Let $dim_{\mathrm{triv}}^{\mathbb{G}}(A) = d$. Then there exist c.p.c. order zero \mathbb{G} -maps $\varphi_0, \ldots, \varphi_d : C(\mathbb{G}) \to A$, such that $\sum_i \varphi_i(1) = 1$. Let $\widetilde{\varphi}_i = \varphi_i \otimes id_{C(\mathbb{G})}$. Then

$$1_A \otimes x = \sum_{j=0}^d \varphi_j(1_{C(\mathbb{G})}) \otimes x = \sum_{j=0}^d \widetilde{\varphi}_j(1_{C(\mathbb{G})} \otimes x)$$
$$\approx_{\varepsilon} \sum_{j=0}^d \sum_{k=1}^m \widetilde{\varphi}_j((y_k \otimes 1_{C(\mathbb{G})})\Delta(z_k))$$
$$= \sum_{j=0}^d \sum_{k=1}^m (\varphi_j^{1/2}(y_k) \otimes 1_{C(\mathbb{G})})\delta(\varphi_j^{1/2}(z_k)),$$

Let $dim_{\mathrm{triv}}^{\mathbb{G}}(A) = d$. Then there exist c.p.c. order zero \mathbb{G} -maps $\varphi_0, \ldots, \varphi_d : C(\mathbb{G}) \to A$, such that $\sum_i \varphi_i(1) = 1$. Let $\widetilde{\varphi}_i = \varphi_i \otimes id_{C(\mathbb{G})}$. Then

$$1_A \otimes x = \sum_{j=0}^d \varphi_j(1_{C(\mathbb{G})}) \otimes x = \sum_{j=0}^d \widetilde{\varphi}_j(1_{C(\mathbb{G})} \otimes x)$$
$$\approx_{\varepsilon} \sum_{j=0}^d \sum_{k=1}^m \widetilde{\varphi}_j((y_k \otimes 1_{C(\mathbb{G})})\Delta(z_k))$$
$$= \sum_{j=0}^d \sum_{k=1}^m (\varphi_j^{1/2}(y_k) \otimes 1_{C(\mathbb{G})})\delta(\varphi_j^{1/2}(z_k)),$$

where we used the functional calculus for c.p.c. order zero maps and the equivariance of φ_j 's.

Let $dim_{\mathrm{triv}}^{\mathbb{G}}(A) = d$. Then there exist c.p.c. order zero \mathbb{G} -maps $\varphi_0, \ldots, \varphi_d : C(\mathbb{G}) \to A$, such that $\sum_i \varphi_i(1) = 1$. Let $\widetilde{\varphi}_i = \varphi_i \otimes id_{C(\mathbb{G})}$. Then

$$1_A \otimes x = \sum_{j=0}^d \varphi_j(1_{C(\mathbb{G})}) \otimes x = \sum_{j=0}^d \widetilde{\varphi}_j(1_{C(\mathbb{G})} \otimes x)$$
$$\approx_{\varepsilon} \sum_{j=0}^d \sum_{k=1}^m \widetilde{\varphi}_j((y_k \otimes 1_{C(\mathbb{G})})\Delta(z_k))$$
$$= \sum_{j=0}^d \sum_{k=1}^m (\varphi_j^{1/2}(y_k) \otimes 1_{C(\mathbb{G})})\delta(\varphi_j^{1/2}(z_k)),$$

where we used the functional calculus for c.p.c. order zero maps and the equivariance of φ_j 's. This shows that $1_A \otimes x$ belongs to B, and hence $B = A \otimes C(\mathbb{G})$ and we conclude that δ is free.

Borsuk-Ulam type theorems

Theorem (Borsuk-Ulam)

Let *n* be a positive natural number. There is no $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $f: S^n * \mathbb{Z}/2\mathbb{Z} \to S^n$.

Theorem (Borsuk-Ulam)

Let *n* be a positive natural number. There is no $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $f: S^n * \mathbb{Z}/2\mathbb{Z} \to S^n$.

Conjecture (Baum-Dabrowski-Hajac)

Let X be a compact Hausdorff topological space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exists a G-equivariant continuous map $f : X * G \to X$.

Theorem (Borsuk-Ulam)

Let *n* be a positive natural number. There is no $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $f: S^n * \mathbb{Z}/2\mathbb{Z} \to S^n$.

Conjecture (Baum-Dabrowski-Hajac)

Let X be a compact Hausdorff topological space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exists a G-equivariant continuous map $f : X * G \to X$.

Conjecture (Baum, Dabrowski, Hajac)

Let A be a unital C*-algebra with a free action $\delta : A \to A \otimes C(\mathbb{G})$ of a non-trivial compact quantum group \mathbb{G} . Then there is no \mathbb{G} -equivariant *-homomorphism $A \to A \circledast^{\delta} C(\mathbb{G})$.

What do we know?

Theorem (Edwards-Bestvina)

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then, if the bundle $X \to X/G$ is locally trivial, there is no G-equivariant map $X * G \to X$.

Theorem (Edwards-Bestvina)

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then, if the bundle $X \to X/G$ is locally trivial, there is no G-equivariant map $X * G \to X$.

Theorem (B. Passer)

Let A be a C*-algebra and let G be a compact Hausdorff group with torsion. Then there is no G-equivariant map $A \to A \otimes C(G)$.

Theorem (Edwards-Bestvina)

Let X be a compact Hausdorff space equipped with a free action of a compact Hausdorff group G. Then, if the bundle $X \to X/G$ is locally trivial, there is no G-equivariant map $X * G \to X$.

Theorem (B. Passer)

Let A be a C*-algebra and let G be a compact Hausdorff group with torsion. Then there is no G-equivariant map $A \to A \circledast C(G)$.

Theorem (Dąbrowski, Hajac, Neshveyev)

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group \mathbb{G} . Then, if $C(\mathbb{G})$ admits a character that is not convolution idempotent, there is no \mathbb{G} -equivariant *-homomorphism $A \to A \circledast^{\delta} C(\mathbb{G})$.

Borsuk-Ulam type result for locally trivial actions

Proposition

Let \mathbb{G} be a compact quantum group, let A be a unital C*-algebra, and let δ be an action of \mathbb{G} on A. Let I be an \mathbb{G} -invariant ideal in A, and denote by $\overline{\delta}$ the action induced by δ on the quotient A/I. Then

 $\dim_{\mathrm{triv}}^{\mathbb{G}}(A/I) \leq \dim_{\mathrm{triv}}^{\mathbb{G}}(A).$

Proposition

Let \mathbb{G} be a compact quantum group, let A be a unital C*-algebra, and let δ be an action of \mathbb{G} on A. Let I be an \mathbb{G} -invariant ideal in A, and denote by $\overline{\delta}$ the action induced by δ on the quotient A/I. Then

 $\dim_{\mathrm{triv}}^{\mathbb{G}}(A/I) \leq \dim_{\mathrm{triv}}^{\mathbb{G}}(A).$

Theorem (Borsuk-Ulam type)

Let A be a unital C*-algebra with an action of a compact Hausdorff group G and let $dim_{triv}^G(A) < \infty$. Then there is no G-equivariant map $A \to A \circledast C(G)$.