3 mei 2017

THERE AND BACK AGAIN: FROM THE BORSUK-ULAM THEOREM TO QUANTUM SPACES

Piotr M. Hajac (IMPAN)

Gezamenlijk werk met

P. F. Baum, L. Dąbrowski, S. Neshveyev en T. Maszczyk.

Jiří Matoušek

Using the Borsuk-Ulam Theorem

Lectures on Topological Methods in Combinatorics and Geometry

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p,-p) of antipodal points on S^n such that f(p)=f(-p).

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p,-p) of antipodal points on S^n such that f(p) = f(-p).

The logical negation of the theorem

There exists a continuous map $f\colon S^n\to\mathbb{R}^n$ such that for all pairs (p,-p) of antipodal points on S^n we have $f(p)\neq f(-p)$.

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p,-p) of antipodal points on S^n such that f(p) = f(-p).

The logical negation of the theorem

There exists a continuous map $f \colon S^n \to \mathbb{R}^n$ such that for all pairs (p,-p) of antipodal points on S^n we have $f(p) \neq f(-p)$.

Equivalent negation

There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}\colon S^n\to S^{n-1}$.

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p,-p) of antipodal points on S^n such that f(p)=f(-p).

The logical negation of the theorem

There exists a continuous map $f \colon S^n \to \mathbb{R}^n$ such that for all pairs (p,-p) of antipodal points on S^n we have $f(p) \neq f(-p)$.

Equivalent negation

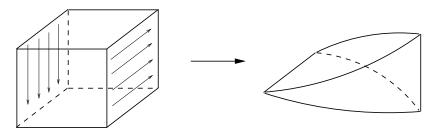
There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}\colon S^n\to S^{n-1}$.

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}: S^n \to S^{n-1}$.

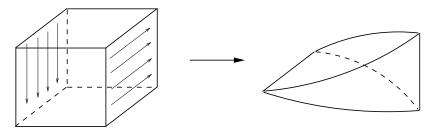
Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



Equivariant join construction

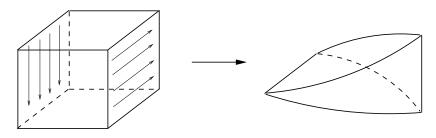
For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join $X\ast G$ is again continuous and free.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join X*G is again continuous and free. In particular, for the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^{n-1} , we obtain a $\mathbb{Z}/2\mathbb{Z}$ -equivariant identification $S^n \cong S^{n-1}*\mathbb{Z}/2\mathbb{Z}$ for the antipodal and diagonal actions respectively.

Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X*G, there does not exist a G-equivariant continuous map $f:X*G\to X$.

Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X*G, there does not exist a G-equivariant continuous map $f:X*G\to X$.

At the moment, the conjecture is known to hold under the assumption of local triviality.

Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:

Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:

1 a topologically closed set in the norm topology of operators,

Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:

- 1 a topologically closed set in the norm topology of operators,
- 2 closed under the operation of taking adjoints of operators.

Theorem (Gelfand-Naimark I)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:

- 1 a topologically closed set in the norm topology of operators,
- 2 closed under the operation of taking adjoints of operators.

Copernican-style revolution

Given a compact Hausdorff space of points, we can define the C*-algebra of functions on the space, but the central concept is that of a commutative C*-algebras, and points appear as characters (algebra homomorphisms into $\mathbb C$) rather than as primary objects. We think of noncommutative unital C*-algebras as algebras of functions on compact quantum spaces.

What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C^* -algebra H with a given unital *-homorphism $\Delta\colon H\longrightarrow H\otimes_{\min}H$ such that the diagram

commutes and the two-sided cancellation property holds:

$$\{(a\otimes 1)\Delta(b)\mid a,b\in H\}^{\operatorname{cls}}=H\underset{\min}{\otimes} H=\{\Delta(a)(1\otimes b)\mid a,b\in H\}^{\operatorname{cls}}.$$

Here "cls" stands for "closed linear span".

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta:A\to A\otimes_{\min}H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H,Δ) on A) iff

- **3** $\ker \delta = 0$ (injectivity).

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta:A\to A\otimes_{\min}H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H,Δ) on A) iff

- $\textbf{ 1} \ \, (\delta \otimes \mathrm{id}) \circ \delta = (\mathrm{id} \otimes \Delta) \circ \delta \ \, \text{(coassociativity)},$
- **3** $\ker \delta = 0$ (injectivity).

Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\boxed{\{(x\otimes 1)\delta(y)\mid x,y\in A\}^{\mathrm{cls}}=A\underset{\min}{\otimes} H}.$$

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1], A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \overset{\delta}{\circledast} H := \left\{ f \in C([0,1], A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

$$\mathrm{id} \otimes \Delta \colon \ C([0,1],A) \underset{\mathrm{min}}{\otimes} H \ \longrightarrow \ C([0,1],A) \underset{\mathrm{min}}{\otimes} H \underset{\mathrm{min}}{\otimes} H$$

defines a free action of the compact quantum group (H,Δ) on the equivariant join C*-algebra $A\circledast^{\delta}H$.

Noncommutative Borsuk-Ulam-type conjectures

Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$. (Known to hold for (H,Δ) with classical torsion.)

Noncommutative Borsuk-Ulam-type conjectures

Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$. (Known to hold for (H,Δ) with classical torsion.)

Conjecture 2

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . If A admits a character, then there does not exist an H-equivariant *-homomorphism $H \to A \otimes^{\delta} H$. (Follows from Conjecture 1.)

Noncommutative Borsuk-Ulam-type conjectures

Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$. (Known to hold for (H,Δ) with classical torsion.)

Conjecture 2

Let A be a unital C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . If A admits a character, then there does not exist an H-equivariant *-homomorphism $H \to A \otimes^{\delta} H$. (Follows from Conjecture 1.)

Classical cases

If X is a compact Hausdorff principal G-bundle, A=C(X) and H=C(G), then Conjecture 2 states that the principal G-bundle $X\ast G$ is not trivializable unless G is trivial. This is clearly true because otherwise $G\ast G$ would be trivializable, which is tantamount to G being contractible, and the only contractible compact Hausdorff group is the trivial one.

Iterated joins of the quantum SU(2) group

Consider the fibration defining the quaternionic projective space:

$$SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$$

To obtain a q-deformation of this fibration, we take $H:=C(SU_q(2))$ and $A:=C(S_q^{4n+3})$ equal to the n-times iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is not trivializable:

$\mathsf{Theorem}$

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism

$$f: C(SU_q(2)) \longrightarrow C(S_q^{4n+3}) \otimes^{\delta} C(SU_q(2)).$$

Iterated joins of the quantum SU(2) group

Consider the fibration defining the quaternionic projective space:

$$SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$$

To obtain a q-deformation of this fibration, we take $H:=C(SU_q(2))$ and $A:=C(S_q^{4n+3})$ equal to the n-times iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is not trivializable:

$\mathsf{Theorem}$

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism

$$f: C(SU_q(2)) \longrightarrow C(S_q^{4n+3}) \circledast^{\delta} C(SU_q(2)).$$

This theorem holds because $SU_q(2)$ has classical torsion elements. It also follows from the stable non-triviality of the tautological quaternionic line bundle:

The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F

$$C(SU_q(2)) \to C(S_q^{4n+3}) \circledast^{\delta} C(SU_q(2)) \to C(SU_q(2)) \circledast^{\Delta} C(SU_q(2)).$$

The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F

$$C(SU_q(2)) \to C(S_q^{4n+3}) \circledast^{\delta} C(SU_q(2)) \to C(SU_q(2)) \circledast^{\Delta} C(SU_q(2)).$$

Furthermore, for any finite-dimensional representation V of a compact quantum group (H,Δ) , the associated finitely generated projective module $(H\circledast^\Delta H)\Box_H V$ is represented by a Milnor idempotent $p_{U^{-1}}$, where U is a matrix of the representation V. Hence an even index pairing calculation for $p_{U^{-1}}$ might be replaced by an odd index pairing calculation for U.

The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F $C(SU_q(2)) \to C(S_q^{4n+3}) \otimes^{\delta} C(SU_q(2)) \to C(SU_q(2)) \otimes^{\Delta} C(SU_q(2)).$

Furthermore, for any finite-dimensional representation V of a compact quantum group (H,Δ) , the associated finitely generated projective module $(H\circledast^\Delta H)\square_H V$ is represented by a Milnor idempotent $p_{U^{-1}}$, where U is a matrix of the representation V. Hence an even index pairing calculation for $p_{U^{-1}}$ might be replaced by an odd index pairing calculation for U.

Now, for $H:=C(SU_q(2))$ and V the fundamental representation of $SU_q(2)$, the module $(H\circledast^\Delta H)\Box_H V$ is the section module of the tautological quaternionic line bundle. It is *not* stably free by the non-vanishing of an index paring of the fundamental representation of $SU_q(2)$ with an appropriate odd Fredholm module. This contradicts the existence of F.