3 mei 2017

RADBOUD
UNIVERSITEIT
NIJMEGEN

THERE AND BACK AGAIN:
FROM THE BORSUK-ULAM THEOREM
TO QUANTUM SPACES

Piotr M. Hajac (IMPAN)
Gezamenlijk werk met
P. F. Baum, L. Dabrowski, S. Neshveyev en T. Maszczyk.

1/1



Jiri Matousek
Using the

Borsuk-Ulam
Theorem

Lectures on Topological Methods
in Combinatorics and Geometry




The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If f: S™ — R" is continuous,
then there exists a pair (p, —p) of antipodal points on S™ such

that f(p) = f(—p).
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There exists a continuous map f: S™ — R" such that for all pairs
(p, —p) of antipodal points on S™ we have f(p) # f(—p).

3/1



Let n be a positive natural number. If f: S™ — R" is continuous,
then there exists a pair (p, —p) of antipodal points on S™ such

that f(p) = f(—p).

The logical negation of the theorem

There exists a continuous map f: S™ — R" such that for all pairs
(p, —p) of antipodal points on S™ we have f(p) # f(—p).

Equivalent negation

There exists a Z/2Z-equivariant continuous map f: Sn — gn—l

v

The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam)

3/1



Theorem (Borsuk-Ulam)

The Borsuk-Ulam Theorem

Let n be a positive natural number. If f: S™ — R" is continuous,
then there exists a pair (p, —p) of antipodal points on S™ such
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Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a
7./27.-equivariant continuous map f: S™ — S"71.

A\
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Equivariant join construction

For any topological spaces X and Y, one defines the join space
X Y as the quotient of [0,1] x X x Y by a certain equivalence
relation:
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If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X x G is again continuous and free.
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Equivariant join construction

For any topological spaces X and Y, one defines the join space
X Y as the quotient of [0,1] x X x Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X * GG is again continuous and free. In particular, for the
antipodal action of Z/2Z on S™~!, we obtain a Z/2Z-equivariant
identification S™ =2 S™~1 x Z /27 for the antipodal and diagonal

actions respectively.
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Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
7./27.-equivariant continuous map f: S" ' % 7./27 — S"71.
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Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
7./27.-equivariant continuous map f: S" ' % 7./27 — S"71.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X * GG, there does not exist a
G-equivariant continuous map f: X xG — X.
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Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
7./27.-equivariant continuous map f: S" ' % 7./27 — S"71.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X * GG, there does not exist a
G-equivariant continuous map f: X xG — X.

At the moment, the conjecture is known to hold under the
assumption of local triviality.
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What is a compact quantum space?

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra is naturally isomorphic to the
algebra of all continuous complex-valued vanishing-at-infinity
functions on a locally compact Hausdorff space.
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Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded)
linear operators on a complex Hilbert space that is:
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What is a compact quantum space?

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra is naturally isomorphic to the
algebra of all continuous complex-valued vanishing-at-infinity
functions on a locally compact Hausdorff space.

Theorem (Gelfand-Naimark II)

Every C*-algebra is a complex algebra of continuous (i.e. bounded)
linear operators on a complex Hilbert space that is:
@ a topologically closed set in the norm topology of operators,
@ closed under the operation of taking adjoints of operators.

Copernican-style revolution

|

Given a compact Hausdorff space of points, we can define the
C*-algebra of functions on the space, but the central concept is
that of a commutative C*-algebras, and points appear as
characters (algebra homomorphisms into C) rather than as primary
objects. We think of noncommutative unital C*-algebras as

algebras of functions on compact quantum spaces.
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What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C*-algebra H with a given
unital x-homorphism A: H — H®mumin H such that the diagram

H—> ~H@H
min
s |-
HOH——>HQHQH
min id min min

commutes and the two-sided cancellation property holds:

{(a®1)A(b) | a,b € HY"™ = H @ H = {A(a)(1®b) | a,b € H}.

min

Here “cls” stands for “closed linear span”.
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Free actions of compact quantum groups

Let A be a unital C*-algebra and § : A — A ®uin H a unital
«-homomorphism. We call ¢ a coaction of H on A (or an action of
the compact quantum group (H,A) on A) iff

O (®id)od = (id® A) o § (coassociativity),
@ {(§(a)(1®h)|ac A hec H = A®un H (counitality)
© kerd = 0 (injectivity).
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Free actions of compact quantum groups

Let A be a unital C*-algebra and § : A — A ®uin H a unital
«-homomorphism. We call ¢ a coaction of H on A (or an action of
the compact quantum group (H,A) on A) iff

O (®id)od = (id® A) o § (coassociativity),
@ {(§(a)(1®h)|ac A hec H = A®un H (counitality)
© kerd = 0 (injectivity).

Definition (D. A. Ellwood)

A coaction ¢ is called free iff

{(z®1)d(y) | m,yeA}ds =AR® H|.

min
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Equivariant noncommutative join construction

Definition (L. Dabrowski, T. Hadfield, P. M. H.)
For any compact quantum group (H,A) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

)
A®H = {f € C([0,1,A) @ H| f(0) e C® H, f(1) € 5(A)}.

min

v
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Equivariant noncommutative join construction

Definition (L. Dabrowski, T. Hadfield, P. M. H.)
For any compact quantum group (H,A) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

)
A® H = {f € C([0,1,A) @ H| f(0) e C® H, f(1) € 5(A)}.

min

| A\

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

ideA: ¢([0,1,4) ® H — C([0,1,4) ® H® H

min min min

defines a free action of the compact quantum group (H,A) on the
equivariant join C*-algebra A®°H.

v
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Noncommutative Borsuk-Ulam-type conjectures

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,A). Then there does not exist an
H-equivariant *-homomorphism A — A ®° H. (Known to hold
for (H,A) with classical torsion.)
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Noncommutative Borsuk-Ulam-type conjectures

Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,A). Then there does not exist an
H-equivariant *-homomorphism A — A ®° H. (Known to hold
for (H,A) with classical torsion.)

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,A). If A admits a character, then
there does not exist an H-equivariant *~homomorphism

H — A®° H. (Follows from Conjecture 1.)
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Noncommutative Borsuk-Ulam-type conjectures

Conjecture 1

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,A). Then there does not exist an
H-equivariant *-homomorphism A — A ®° H. (Known to hold
for (H,A) with classical torsion.)

Let A be a unital C*-algebra with a free action of a non-trivial
compact quantum group (H,A). If A admits a character, then
there does not exist an H-equivariant *~homomorphism

H — A®° H. (Follows from Conjecture 1.)

Classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and
H = C(G), then Conjecture 2 states that the principal G-bundle
X % G is not trivializable unless G is trivial. This is clearly true
because otherwise G * G would be trivializable, which is
tantamount to GG being contractible, and the only contractible
compact Hausdorff group is the trivial one.
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Iterated joins of the quantum SU (2) group

Consider the fibration defining the quaternionic projective space:
SU(2) % --- % SU(2) = §4nt3  gint3 /517 (2) = HP™.

To obtain a g-deformation of this fibration, we take H := C(SU4(2))
and A := C(S§”+3) equal to the n-times iterated equivariant join of H.
The quantum principal SU,(2)-bundle thus given is not trivializable:

There does not exist a C'(SU,4(2))-equivariant *-homomorphism
f1 O(SUL(2)) — C(S;™3) @ C(SU,(2)).
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Iterated joins of the quantum SU (2) group

Consider the fibration defining the quaternionic projective space:
SU(2) % --- % SU(2) = §4nt3  gint3 /517 (2) = HP™.

To obtain a g-deformation of this fibration, we take H := C(SU4(2))
and A := C(S§”+3) equal to the n-times iterated equivariant join of H.
The quantum principal SU,(2)-bundle thus given is not trivializable:

There does not exist a C'(SU,4(2))-equivariant *-homomorphism

f1 O(SUL(2)) — C(S;™3) @ C(SU,(2)).

This theorem holds because SU,(2) has classical torsion elements.
It also follows from the stable non-triviality of the tautological
quaternionic line bundle:
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The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F'
C(SU4(2)) = C(S")@°C(SU4(2)) — C(SU,(2))®>C(SU,(2)).
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The tautological quaternionic line bundle

If f existed, there would exist an equivariant map F'
C(SU4(2)) = C(S")@°C(SU4(2)) — C(SU,(2))®>C(SU,(2)).

Furthermore, for any finite-dimensional representation V' of a
compact quantum group (H, A), the associated finitely generated
projective module (H@AH)DHV is represented by a Milnor
idempotent pr—1, where U is a matrix of the representation V.
Hence an even index pairing calculation for p;;—1 might be replaced
by an odd index pairing calculation for U.
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If f existed, there would exist an equivariant map F'
C(SU4(2)) = C(S")@°C(SU4(2)) — C(SU,(2))®>C(SU,(2)).

Furthermore, for any finite-dimensional representation V' of a
compact quantum group (H, A), the associated finitely generated
projective module (H@AH)DHV is represented by a Milnor
idempotent pr—1, where U is a matrix of the representation V.
Hence an even index pairing calculation for p;;—1 might be replaced
by an odd index pairing calculation for U.

Now, for H := C'(SU4(2)) and V' the fundamental representation
of SU,(2), the module (H®~ H)OyV is the section module of
the tautological quaternionic line bundle. It is not stably free by
the non-vanishing of an index paring of the fundamental
representation of SU,(2) with an appropriate odd Fredholm
module. This contradicts the existence of F'.
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