

NONCOMMUTATIVE BORSUK-ULAM-TYPE CONJECTURES REVISITED

Piotr M. Hajac (IMPAN)

Joint work with Ludwik Dąbrowski and Sergey Neshveyev

Trieste, 3 February 2017

Borsuk-Ulam-type conjectures

Conjecture (Baum, Dąbrowski, Hajac)

Let A be a unital C*-algebra with a free action $\delta: A \to A \otimes_{\min} H$ of a non-trivial compact quantum group (H, Δ) , and let $A \circledast^{\delta} H$ be the equivariant noncommutative join C*-algebra of A and H with the induced free action of (H, Δ) . Then

 $\not\exists$ an *H*-equivariant *-homomorphism $A \longrightarrow A \circledast^{\delta} H \mid$.

Furthermore, if \boldsymbol{A} admits a character, then

 \nexists an *H*-equivariant *-homomorphism $H \longrightarrow A \circledast^{\delta} H \mid$.

Borsuk-Ulam-type conjectures

Conjecture (Baum, Dąbrowski, Hajac)

Let A be a unital C*-algebra with a free action $\delta: A \to A \otimes_{\min} H$ of a non-trivial compact quantum group (H, Δ) , and let $A \circledast^{\delta} H$ be the equivariant noncommutative join C*-algebra of A and H with the induced free action of (H, Δ) . Then

 $\not\exists$ an *H*-equivariant *-homomorphism $A \longrightarrow A \circledast^{\delta} H \mid$.

Furthermore, if A admits a character, then

 \nexists an *H*-equivariant *-homomorphism $H \longrightarrow A \circledast^{\delta} H$.

Note that the second statement is an immediate consequence of the first one. Indeed, if α is a character on A, then

$$(\alpha \otimes \mathsf{id}_H) \circ \delta \colon A \longrightarrow H$$

is an *H*-equvariant *-homomorphism.

Definition (S. L. Woronowicz)

A compact quantum group is a unital C^* -algebra H with a given unital *-homorphism $\Delta \colon H \longrightarrow H \otimes_{\min} H$ such that the diagram

commutes and the two-sided cancellation property holds:

$$\{(a\otimes 1)\Delta(b) \mid a, b \in H\}^{\operatorname{cls}} = H \underset{\min}{\otimes} H = \{\Delta(a)(1\otimes b) \mid a, b \in H\}^{\operatorname{cls}}.$$

Here "cls" stands for "closed linear span".

Actions of compact quantum groups

Let A be a unital C*-algebra and $\delta: A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ an action of the compact quantum group (H, Δ) on A (or a coaction of H on A) iff

 $(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$ (coassociativity),

Actions of compact quantum groups

Let A be a unital C*-algebra and $\delta: A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ an action of the compact quantum group (H, Δ) on A (or a coaction of H on A) iff

$$(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$$
 (coassociativity),

2
$$\{\delta(a)(1 \otimes h) \mid a \in A, h \in H\}^{cls} = A \underset{\min}{\otimes} H$$
 (counitality).

Given a compact quantum group (H, Δ) , we denote by $\mathcal{O}(H)$ its dense Hopf *-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is $\mathcal{P}_H(A) := \{ a \in A \, | \, \delta(a) \in A \otimes_{\mathrm{alg}} \mathcal{O}(H) \}.$

Actions of compact quantum groups

Let A be a unital C*-algebra and $\delta: A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ an action of the compact quantum group (H, Δ) on A (or a coaction of H on A) iff

$$(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$$
 (coassociativity),

2
$$\{\delta(a)(1 \otimes h) \mid a \in A, h \in H\}^{cls} = A \underset{\min}{\otimes} H$$
 (counitality).

Given a compact quantum group (H, Δ) , we denote by $\mathcal{O}(H)$ its dense Hopf *-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is
$$\mathcal{P}_H(A) := \{ a \in A \, | \, \delta(a) \in A \otimes_{\mathrm{alg}} \mathcal{O}(H) \}.$$

Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\{(x \otimes 1)\delta(y) \mid x, y \in A\}^{\operatorname{cls}} = A \underset{\min}{\otimes} H$$

Equivariant noncommutative joins

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Equivariant noncommutative joins

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

$$\mathrm{id} \otimes \Delta \colon \ C([0,1],A) \underset{\min}{\otimes} H \ \longrightarrow \ C([0,1],A) \underset{\min}{\otimes} H \underset{\min}{\otimes} H$$

defines a free action of the compact quantum group (H, Δ) on the equivariant join C*-algebra $A \circledast^{\delta} H$.

Torsion noncommutative Borsuk-Ulam theorem

Theorem (main)

Let A be a unital C*-algebra with a free action $\delta : A \to A \otimes_{\min} H$ of a non-trivial compact quantum group (H, Δ) , and let $A \circledast^{\delta} H$ be the equivariant noncommutative join C*-algebra of A and H with the induced free action of (H, Δ) . Then, if H admits a character different from the counit whose finite convolution power is the counit, the following statements are true and equivalent:

1 $\not\exists$ an *H*-equivariant *-homomorphism $A \longrightarrow A \otimes^{\delta} H$.

2 $\not\exists$ a *-homomorphism $\gamma : A \longrightarrow CA$ such that $ev_1 \circ \gamma = id_A$. Here $CA := A \otimes \mathbb{C}$ is the cone of A, and ev_1 is the evaluation at 1.

Torsion noncommutative Borsuk-Ulam theorem

Theorem (main)

Let A be a unital C*-algebra with a free action $\delta : A \to A \otimes_{\min} H$ of a non-trivial compact quantum group (H, Δ) , and let $A \circledast^{\delta} H$ be the equivariant noncommutative join C*-algebra of A and H with the induced free action of (H, Δ) . Then, if H admits a character different from the counit whose finite convolution power is the counit, the following statements are true and equivalent:

1 $\not\exists$ an H-equivariant *-homomorphism $A \longrightarrow A \circledast^{\delta} H$.

2 $\not\exists$ a *-homomorphism $\gamma : A \longrightarrow CA$ such that $ev_1 \circ \gamma = id_A$. Here $CA := A \otimes \mathbb{C}$ is the cone of A, and ev_1 is the evaluation at 1.

The first statement can be reduced to its special case $H = C(\mathbb{Z}/k\mathbb{Z}), k > 1$, proven by B. Passer. The second statement is follows from the first one for any compact quantum group (H, Δ) , and the reverse implicationis true when (H, Δ) admits the counit. For $A = C(S^n)$ the second statement is *equivalent* to the Brouwer fixed-point theorem for the ball B^n .

K-lemma

Lemma

Let CB and ΣB be respectively the cone and the unreduced suspension of a unital C*-algebra B admitting a character. Then $K_0(\Sigma B) \cong \mathbb{Z}[1] \oplus K_1(B).$

K-lemma

Lemma

Let CB and ΣB be respectively the cone and the unreduced suspension of a unital C*-algebra B admitting a character. Then $K_0(\Sigma B) \cong \mathbb{Z}[1] \oplus K_1(B).$

Proof. Since ΣB is a surjective pullback of CB with CB over B, we get the 6-term exact sequence:

Hence we obtain the exact sequence

$$0 \longrightarrow K_1(B) \longrightarrow K_0(\Sigma B) \longrightarrow \mathbb{Z} \longrightarrow 0$$

proving the lemma.

Associated-vector-bundle theorem

Theorem

Let G be a compact connected semisimple Lie group. Then, there exists a finite-dimensional representation V of G such that for any compact Hausdorff space X equipped with a free G-action, the associated vector bundle

$$(X * G) \stackrel{G}{\times} V$$

is not stably trivial.

Associated-vector-bundle theorem

Theorem

Let G be a compact connected semisimple Lie group. Then, there exists a finite-dimensional representation V of G such that for any compact Hausdorff space X equipped with a free G-action, the associated vector bundle

$$(X * G) \stackrel{G}{\times} V$$

is not stably trivial.

Note that this theorem implies the commutative Borsuk-Ulam conjecture of type II for compact connected semisimple Lie groups.

Theorem

Let G be a compact connected semisimple Lie group. Then, there exists a finite-dimensional representation V of G such that for any compact Hausdorff space X equipped with a free G-action, the associated vector bundle

$$(X * G) \stackrel{G}{\times} V$$

is **not** stably trivial.

Note that this theorem implies the commutative Borsuk-Ulam conjecture of type II for compact connected semisimple Lie groups.

To prove the theorem, we first show it for X = G using the K-lemma with B = C(G), then take a G-equivariant map $G * G \to X * G$, and apply the following observation:

Pulling back classical bundles

Let G be a compact Hausdorff group acting on compact Hausdorff spaces Y and Y', and let $F: Y' \to Y$ be an equivariant continuous map. Then, if the G-action on Y is free, so is the G-action on Y', and the formula

$$Y' \ni p \longmapsto ([p], F(p)) \in Y'/G \underset{Y/G}{\times} Y$$

defines a G-equivariant homeomorphism of compact principal bundles.

Pulling back classical bundles

Let G be a compact Hausdorff group acting on compact Hausdorff spaces Y and Y', and let $F: Y' \to Y$ be an equivariant continuous map. Then, if the G-action on Y is free, so is the G-action on Y', and the formula

$$Y' \ni p \longmapsto ([p], F(p)) \in Y'/G \underset{Y/G}{\times} Y$$

defines a G-equivariant homeomorphism of compact principal bundles.

Corollary

If V is a representation of G, the following associated vector bundles over Y^\prime/G are isomorphic

$$(F|_{Y'/G})^* \left(Y \stackrel{G}{\times} V \right) \cong Y' \stackrel{G}{\times} V.$$

In particular, if dim $V < \infty$, the induced map $(F|_{Y'/G})^* : K^0(Y) \to K^0(Y')$ satisfies

$$(F|_{Y'/G})^*\left(\left[Y \overset{G}{\times} V\right]\right) = \left[Y' \overset{G}{\times} V\right]$$

Deformation theorem

Theorem

Let G be a compact connected semisimple Lie group. Let $(C(G_q), \Delta_q), q > 0$, be a family of compact quantum groups that is a q-deformation of $(C(G), \Delta)$. Then, for any q > 0 there exists a finite-dimensional left $\mathcal{O}(G_q)$ -comodule V_q such that for any unital C*-algebra A admitting a character and equipped with a free action of $(C(G_q), \Delta_q)$, the associated finitely generated projective left $(A \circledast_{\delta} C(G_q))^{\operatorname{co} C(G_q)}$ -module $\mathcal{P}_{C(G_q)}(A \circledast C(G_q)) \Box V_q$ is not stably free.

Deformation theorem

Theorem

Let G be a compact connected semisimple Lie group. Let $(C(G_q), \Delta_q), q > 0$, be a family of compact quantum groups that is a q-deformation of $(C(G), \Delta)$. Then, for any q > 0 there exists a finite-dimensional left $\mathcal{O}(G_q)$ -comodule V_q such that for any unital C*-algebra A admitting a character and equipped with a free action of $(C(G_q), \Delta_q)$, the associated finitely generated projective left $(A \circledast_{\delta} C(G_q))^{\operatorname{co} C(G_q)}$ -module $\mathcal{P}_{C(G_q)}(A \circledast C(G_q)) \Box V_q$ is not stably free.

Note that this theorem implies the Borsuk-Ulam conjecture of type II for q-deformations of compact connected semisimple Lie groups.

Deformation theorem

Theorem

Let G be a compact connected semisimple Lie group. Let $(C(G_q), \Delta_q), q > 0$, be a family of compact quantum groups that is a q-deformation of $(C(G), \Delta)$. Then, for any q > 0 there exists a finite-dimensional left $\mathcal{O}(G_q)$ -comodule V_q such that for any unital C*-algebra A admitting a character and equipped with a free action of $(C(G_q), \Delta_q)$, the associated finitely generated projective left $(A \circledast_{\delta} C(G_q))^{\operatorname{co} C(G_q)}$ -module $\mathcal{P}_{C(G_q)}(A \circledast C(G_q)) \Box V_q$ is not stably free.

Note that this theorem implies the Borsuk-Ulam conjecture of type II for q-deformations of compact connected semisimple Lie groups. As in the classical case, we first prove it for $A = C(G_q)$, use a character on A to construct an H-equivariant *-homomorphism $A \circledast C(G_q) \longrightarrow C(G_q) \circledast C(G_q)$, and apply:

Noncommutative pulling-back theorem

Theorem (P. M. H. and T. Maszczyk)

Let (H, Δ) be a compact quantum group, C and C' (H, Δ) -C*-algebras, B and B' the corresponding fixed-point subalgebras, and $f: C \to C'$ an equivariant *-homomorphism. Then, if the action of (H, Δ) on C is free and V is a representation of (H, Δ) , the following left B'-modules are isomorphic

 $B'_f \underset{B}{\otimes} (\mathcal{P}_H(C) \Box V) \cong \mathcal{P}_H(C') \Box V.$

Here B'_f stands for the B'-B-bimodule with the right action given by f, i.e. $b \cdot c = bf(c)$.

Noncommutative pulling-back theorem

Theorem (P. M. H. and T. Maszczyk)

Let (H, Δ) be a compact quantum group, C and C' (H, Δ) -C*-algebras, B and B' the corresponding fixed-point subalgebras, and $f: C \to C'$ an equivariant *-homomorphism. Then, if the action of (H, Δ) on C is free and V is a representation of (H, Δ) , the following left B'-modules are isomorphic

 $B'_f \underset{B}{\otimes} (\mathcal{P}_H(C) \Box V) \cong \mathcal{P}_H(C') \Box V.$

Here B'_f stands for the B'-B-bimodule with the right action given by f, i.e. $b \cdot c = bf(c)$.

Corollary

The induced map $(f|_B)_*: K_0(B) \to K_0(B')$ satisfies

$$(f|_B)_*([\mathcal{P}_H(C)\Box V]) = [\mathcal{P}_H(C')\Box V] \mid .$$