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Disclaimers

This talk contains mature subject matter. Viewer discretion is
advised.

Following Section 13 and Section 11(c) of the Canadian
Charter of Rights and Freedoms, one has the right to decline
to answer questions.

Your statutory rights are not affected.
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Pulling back classical bundles
Let G be a compact Hausdorff group acting on compact Hausdorff
spaces Y and Y ′, and let F : Y ′ → Y be an equivariant continuous
map. Then, if the G-action on Y is free, so is the G-action on Y ′,
and the formula

Y ′ 3 p 7−→ ([p], F (p)) ∈ Y ′/G ×
Y/G

Y

defines a G-equivariant homeomorphism of compact principal bundles.

Corollary
If V is a representation of G, the following associated vector
bundles over Y ′/G are isomorphic

(F |Y ′/G)∗
(
Y ×

G
V
) ∼= Y ′ ×

G
V .

In particular, if dimV <∞, the induced map
(F |Y ′/G)∗ : K0(Y )→ K0(Y ′) satisfies

(F |Y ′/G)∗
(
[Y ×

G
V ]

)
= [Y ′ ×

G
V ] .
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Equivariant join construction

For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X ∗G is again continuous and free.
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Gauged equivariant join construction
If Y = G, we can construct the join G-space X ∗ Y in a different
manner: at 0 we collapse X ×G to G as before, and at 1 we
collapse X ×G to (X ×G)/RD instead of X. Here RD is the
equivalence relation generated by

(x, h) ∼ (x′, h′), where xh = x′h′ .

More precisely, let R′J be the equivalence relation on I ×X ×G
generated by

(0, x, h) ∼ (0, x′, h) and (1, x, h) ∼ (1, x′, h′), where xh = x′h′.

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right
G-action on (I ×X ×G)/R′J , and the formula

X ∗G 3 [(t, x, h)] 7−→ [(t, xh−1, h)] ∈ (I ×X ×G)/R′J

yields a G-equivariant homeomorphism.
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Classical projective spaces
Consider the n-th iteration:

(Z/2Z) ∗ · · · ∗ (Z/2Z) ∼= Sn.

With the diagonal Z/2Z-action, we obtain

Sn/(Z/2Z) = RPn.

Consider the n-th iteration:

U(1) ∗ · · · ∗ U(1) ∼= S2n+1.

With the diagonal U(1)-action, we obtain

S2n+1/U(1) = CPn.

Consider the n-th iteration:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3.

With the diagonal SU(2)-action, we obtain

S4n+3/SU(2) = HPn.
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Compact quantum group

Definition (S. L. Woronowicz)

A compact quantum group is a unital C∗-algebra H with a given
unital ∗-homorphism ∆: H −→ H⊗minH such that the diagram

H
∆ //

∆
��

H ⊗
min
H

∆⊗id
��

H ⊗
min
H

id⊗∆
// H ⊗

min
H⊗

min
H

commutes and the two-sided cancellation property holds:

{(a⊗1)∆(b) | a, b ∈ H}cls = H ⊗
min

H = {∆(a)(1⊗b) | a, b ∈ H}cls.

Here “cls" stands for “closed linear span".
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Free actions of compact quantum groups
Let A be a unital C∗-algebra and δ : A→ A⊗min H an injective
unital ∗-homomorphism. We call δ a coaction of H on A (or an
action of the compact quantum group (H,∆) on A) if

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),
2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A ⊗

min
H (counitality).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .

Given a compact quantum group (H,∆), we denote by O(H) its
dense Hopf ∗-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is PH(A) := { a ∈ A | δ(a) ∈ A⊗alg O(H) }.
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The Peter-Weyl-Galois Theorem
Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,∆). The following conditions are equivalent:

1 The action is free.
2 The action satisfies the Peter-Weyl-Galois condition.
3 The action is strongly monoidal.

Put B = AcoH := {a ∈ A | δ(a) = a⊗ 1} (coaction-invariants).

The Peter-Weyl-Galois condition
is the bijectivity of the canonical map
PH(A)⊗B PH(A) 3 x⊗ y can7−→ (x⊗ 1)δ(y) ∈ PH(A)⊗alg O(H).

Let V and W be O(H)-comodules (representations of (H,∆)).

The strong monoidality
is the bijectivity of the natural map
(PH(A)�V )⊗B (PH(A)�W ) −→ PH(A)�(V ⊗algW ).
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Main result

Theorem
Let (H,∆) be a compact quantum group, A and A′

(H,∆)-C*-algebras, B and B′ the corresponding fixed-point
subalgebras, and f : A→ A′ an equivariant *-homomorphism.
Then, if the action of (H,∆) on A is free and V is a representation
of (H,∆), the following left B′-modules are isomorphic

B′f ⊗
B

(
PH(A)�V

) ∼= PH(A′)�V .

Here B′f stands for the B′-B-bimodule with the right action given
by f , i.e. b · c = bf(c).

Corollary

The induced map (f |B)∗ : K0(B)→ K0(B′) satisfies

(f |B)∗
(
[PH(A)�V ]

)
= [PH(A′)�V ] .
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Equivariant noncommutative join
construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the unital
C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H

∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Iterated joins of the quantum SU(2) group

To obtain a q-deformation of

S4n+3/SU(2) = HPn,

we take H := C(SUq(2)) and A := C(S4n+3
q ) equal to the n-times

iterated equivariant join of H. We view the fixed-point subalgebra
C(S4n+3

q )SUq(2) as the defining C*-algebra C(HPnq ) of a quantum
quaternionic projective space.

Then we define the noncommutative tautological quaternionic line
bundle and its dual as noncommutative complex vector bundles
associated through the contragredient representation V ∨f of the
fundamental represention of SUq(2) and the fundamental
represention Vf itself, respectively.
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Quantum quaternionic line bundles

Theorem

For any n ∈ N \ {0} and 0 < q ≤ 1, the noncommutative
tautological quaternionic line bundle and its dual are not stably
trivial as noncommutative complex vector bundles, i.e., the finitely
generated projective left C(HPnq )-modules PSUq(2)(S

4n+3
q )�V ∨f

and PSUq(2)(S
4n+3
q )�Vf are not stably free.

Proof outline: There exists an SUq(2)-equivariant *-homomorphism
C(S4n+3

q )→ C(SUq(2))~∆C(SUq(2)) =: C(S7
q ). Hence, by the

main theorem, it suffices to prove that the left C(HP1
q)-modules

PSUq(2)(S
7
q )�V ∨f and PSUq(2)(S

7
q )�Vf are not stably free.

Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely-generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V . If
H := C(SUq(2)) and V is V ∨f or Vf , then (H~∆H)�HV is not
stably free by the non-vanishing of an index paring of U . �
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Quantum quaternionic principal bundles

Let (H,∆) be a compact quantum group acting freely on a unital
C*-algebra A. It follows from Hopf-Galois theory that, if there
exists an H-equivariant *-homomorphism H → A, then the
associated AcoH -module PH(A)�V is free for any left
O(H)-comodule V .

Consequently, the quantum principal SUq(2)-bundle S4n+3
q → HPnq

is not trivializable:

Corollary

There does not exist a C(SUq(2))-equivariant *-homomorphism

f : C(SUq(2)) −→ C(S4n+3
q ).
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