

FIELDS

PULLING BACK NONCOMMUTATIVE ASSOCIATED VECTOR BUNDLES AND CONSTRUCTING QUANTUM QUATERNIONIC PROJECTIVE SPACES

> Piotr M. Hajac (IMPAN) Tomasz Maszczyk (Warsaw University)

> > Toronto, 8 December 2016

• This talk contains mature subject matter. Viewer discretion is advised.

- This talk contains mature subject matter. Viewer discretion is advised.
- Following Section 13 and Section 11(c) of the Canadian Charter of Rights and Freedoms, one has the right to decline to answer questions.

- This talk contains mature subject matter. Viewer discretion is advised.
- Following Section 13 and Section 11(c) of the Canadian Charter of Rights and Freedoms, one has the right to decline to answer questions.
- Your statutory rights are not affected.

Pulling back classical bundles

Let G be a compact Hausdorff group acting on compact Hausdorff spaces Y and Y', and let $F: Y' \to Y$ be an equivariant continuous map. Then, if the G-action on Y is free, so is the G-action on Y', and the formula

$$Y' \ni p \longmapsto ([p], F(p)) \in Y'/G \underset{Y/G}{\times} Y$$

defines a G-equivariant homeomorphism of compact principal bundles.

Pulling back classical bundles

Let G be a compact Hausdorff group acting on compact Hausdorff spaces Y and Y', and let $F: Y' \to Y$ be an equivariant continuous map. Then, if the G-action on Y is free, so is the G-action on Y', and the formula

$$Y' \ni p \longmapsto ([p], F(p)) \in Y'/G \underset{Y/G}{\times} Y$$

defines a G-equivariant homeomorphism of compact principal bundles.

Corollary

If V is a representation of G, the following associated vector bundles over Y^\prime/G are isomorphic

$$(F|_{Y'/G})^*(Y \underset{G}{\times} V) \cong Y' \underset{G}{\times} V.$$

In particular, if dim $V < \infty$, the induced map $(F|_{Y'/G})^* : K^0(Y) \to K^0(Y')$ satisfies $(F|_{Y'/G})^*([Y \times V]) = [Y' \times V]$.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:

Equivariant join construction

For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:

If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join X * G is again continuous and free.

Gauged equivariant join construction

If Y = G, we can construct the join G-space X * Y in a different manner: at 0 we collapse $X \times G$ to G as before, and at 1 we collapse $X \times G$ to $(X \times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h'), \text{ where } xh = x'h' \Big|.$$

Gauged equivariant join construction

If Y = G, we can construct the join G-space X * Y in a different manner: at 0 we collapse $X \times G$ to G as before, and at 1 we collapse $X \times G$ to $(X \times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h'), \text{ where } xh = x'h' \Big|.$$

More precisely, let R'_J be the equivalence relation on $I\times X\times G$ generated by

 $(0,x,h)\sim (0,x',h) \quad \text{and} \quad (1,x,h)\sim (1,x',h'), \text{ where } xh=x'h'.$

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right *G*-action on $(I \times X \times G)/R'_J$, and the formula

 $X * G \ni [(t, x, h)] \longmapsto [(t, xh^{-1}, h)] \in (I \times X \times G)/R'_J$

yields a G-equivariant homeomorphism.

Classical projective spaces

Consider the n-th iteration:

$$(\mathbb{Z}/2\mathbb{Z}) * \cdots * (\mathbb{Z}/2\mathbb{Z}) \cong S^n.$$

With the diagonal $\mathbb{Z}/2\mathbb{Z}\text{-}action,$ we obtain

 $S^n/(\mathbb{Z}/2\mathbb{Z}) = \mathbb{RP}^n.$

Classical projective spaces

Consider the n-th iteration:

$$(\mathbb{Z}/2\mathbb{Z}) * \cdots * (\mathbb{Z}/2\mathbb{Z}) \cong S^n.$$

With the diagonal $\mathbb{Z}/2\mathbb{Z}\text{-}\mathsf{action},$ we obtain

 $S^n/(\mathbb{Z}/2\mathbb{Z}) = \mathbb{RP}^n.$

Consider the n-th iteration:

$$U(1) \ast \dots \ast U(1) \cong S^{2n+1}.$$

With the diagonal $U(1)\mbox{-}action,$ we obtain

$$S^{2n+1}/U(1) = \mathbb{CP}^n.$$

Classical projective spaces

Consider the n-th iteration:

$$(\mathbb{Z}/2\mathbb{Z}) * \cdots * (\mathbb{Z}/2\mathbb{Z}) \cong S^n.$$

With the diagonal $\mathbb{Z}/2\mathbb{Z}$ -action, we obtain

 $S^n/(\mathbb{Z}/2\mathbb{Z}) = \mathbb{RP}^n.$

Consider the n-th iteration:

$$U(1) \ast \dots \ast U(1) \cong S^{2n+1}.$$

With the diagonal $U(1)\text{-}\mathrm{action},$ we obtain $S^{2n+1}/U(1) = \mathbb{C}\mathbb{P}^n.$

Consider the n-th iteration:

$$SU(2) * \cdots * SU(2) \cong S^{4n+3}$$

With the diagonal SU(2)-action, we obtain

 $S^{4n+3}/SU(2) = \mathbb{HP}^n.$

Definition (S. L. Woronowicz)

A compact quantum group is a unital C^* -algebra H with a given unital *-homorphism $\Delta \colon H \longrightarrow H \otimes_{\min} H$ such that the diagram

commutes and the two-sided cancellation property holds:

$$\{(a\otimes 1)\Delta(b) \mid a, b \in H\}^{\operatorname{cls}} = H \underset{\min}{\otimes} H = \{\Delta(a)(1\otimes b) \mid a, b \in H\}^{\operatorname{cls}}.$$

Here "cls" stands for "closed linear span".

Free actions of compact quantum groups

Let A be a unital C*-algebra and $\delta : A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) if

- $(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$ (coassociativity),
- $\ \ \, {\bf @} \ \ \{\delta(a)(1\otimes h)\mid a\in A,\,h\in H\}^{\rm cls}=A\underset{\rm min}{\otimes} H \ \ ({\rm counitality}).$

Free actions of compact quantum groups

Let A be a unital C*-algebra and $\delta: A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) if

$$(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$$
 (coassociativity),

$$2 \{\delta(a)(1 \otimes h) \mid a \in A, h \in H\}^{cls} = A \underset{\min}{\otimes} H \text{ (counitality)}.$$

Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\{(x \otimes 1)\delta(y) \mid x, y \in A\}^{\operatorname{cls}} = A \underset{\min}{\otimes} H$$

Free actions of compact quantum groups

Let A be a unital C*-algebra and $\delta: A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) if

$$(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$$
 (coassociativity),

$${ \ \ 2 \ } \{ \delta(a)(1\otimes h) \mid a \in A, \ h \in H \}^{\mathrm{cls}} = A \underset{\min}{\otimes} H \ \text{(counitality)}.$$

Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\{(x \otimes 1)\delta(y) \mid x, y \in A\}^{\operatorname{cls}} = A \underset{\min}{\otimes} H$$

Given a compact quantum group (H, Δ) , we denote by $\mathcal{O}(H)$ its dense Hopf *-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is
$$\mathcal{P}_H(A) := \{ a \in A \, | \, \delta(a) \in A \otimes_{\mathrm{alg}} \mathcal{O}(H) \}.$$

The Peter-Weyl-Galois Theorem

Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact quantum group (H, Δ) . The following conditions are equivalent:

- The action is free.
- **2** The action satisfies the Peter-Weyl-Galois condition.
- The action is strongly monoidal.

The Peter-Weyl-Galois Theorem

Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact quantum group (H, Δ) . The following conditions are equivalent:

- The action is free.
- **2** The action satisfies the Peter-Weyl-Galois condition.
- The action is strongly monoidal.

Put
$$B = A^{\operatorname{co} H} := \{a \in A \mid \delta(a) = a \otimes 1\}$$
 (coaction-invariants).

The Peter-Weyl-Galois condition

is the bijectivity of the canonical map $\mathcal{P}_H(A) \otimes_B \mathcal{P}_H(A) \ni x \otimes y \xrightarrow{can} (x \otimes 1)\delta(y) \in \mathcal{P}_H(A) \otimes_{\mathrm{alg}} \mathcal{O}(H).$

The Peter-Weyl-Galois Theorem

Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact quantum group (H, Δ) . The following conditions are equivalent:

- The action is free.
- **2** The action satisfies the Peter-Weyl-Galois condition.
- The action is strongly monoidal.

Put
$$B = A^{\operatorname{co} H} := \{a \in A \mid \delta(a) = a \otimes 1\}$$
 (coaction-invariants).

The Peter-Weyl-Galois condition

is the bijectivity of the canonical map $\mathcal{P}_H(A) \otimes_B \mathcal{P}_H(A) \ni x \otimes y \xrightarrow{can} (x \otimes 1)\delta(y) \in \mathcal{P}_H(A) \otimes_{\mathrm{alg}} \mathcal{O}(H).$

Let V and W be $\mathcal{O}(H)$ -comodules (representations of (H, Δ)).

The strong monoidality

is the bijectivity of the natural map $(\mathcal{P}_H(A) \Box V) \otimes_B (\mathcal{P}_H(A) \Box W) \longrightarrow \mathcal{P}_H(A) \Box (V \otimes_{\text{alg}} W).$

Main result

Theorem

Let (H, Δ) be a compact quantum group, A and A' (H, Δ) -C*-algebras, B and B' the corresponding fixed-point subalgebras, and $f : A \to A'$ an equivariant *-homomorphism. Then, if the action of (H, Δ) on A is free and V is a representation of (H, Δ) , the following left B'-modules are isomorphic

 $B'_f \underset{B}{\otimes} (\mathcal{P}_H(A) \Box V) \cong \mathcal{P}_H(A') \Box V.$

Here B'_f stands for the B'-B-bimodule with the right action given by f, i.e. $b \cdot c = bf(c)$.

Main result

Theorem

Let (H, Δ) be a compact quantum group, A and A' (H, Δ) -C*-algebras, B and B' the corresponding fixed-point subalgebras, and $f : A \to A'$ an equivariant *-homomorphism. Then, if the action of (H, Δ) on A is free and V is a representation of (H, Δ) , the following left B'-modules are isomorphic

 $B'_f \underset{B}{\otimes} (\mathcal{P}_H(A) \Box V) \cong \mathcal{P}_H(A') \Box V.$

Here B'_f stands for the B'-B-bimodule with the right action given by f, i.e. $b \cdot c = bf(c)$.

Corollary

The induced map $(f|_B)_* : K_0(B) \to K_0(B')$ satisfies $(f|_B)_* ([\mathcal{P}_H(A) \Box V]) = [\mathcal{P}_H(A') \Box V].$

Equivariant noncommutative join

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Equivariant noncommutative join

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

$$\mathrm{id} \otimes \Delta \colon \ C([0,1],A) \underset{\min}{\otimes} H \ \longrightarrow \ C([0,1],A) \underset{\min}{\otimes} H \underset{\min}{\otimes} H$$

defines a free action of the compact quantum group (H, Δ) on the equivariant join C*-algebra $A \circledast^{\delta} H$.

Iterated joins of the quantum SU(2) group

To obtain a q-deformation of

$$S^{4n+3}/SU(2) = \mathbb{HP}^n,$$

we take $H := C(SU_q(2))$ and $A := C(S_q^{4n+3})$ equal to the *n*-times iterated equivariant join of H. We view the fixed-point subalgebra $C(S_q^{4n+3})^{SU_q(2)}$ as the defining C*-algebra $C(\mathbb{HP}_q^n)$ of a *quantum quaternionic projective space*.

Iterated joins of the quantum SU(2) group

To obtain a q-deformation of

$$S^{4n+3}/SU(2) = \mathbb{HP}^n,$$

we take $H := C(SU_q(2))$ and $A := C(S_q^{4n+3})$ equal to the *n*-times iterated equivariant join of H. We view the fixed-point subalgebra $C(S_q^{4n+3})^{SU_q(2)}$ as the defining C*-algebra $C(\mathbb{HP}_q^n)$ of a *quantum quaternionic projective space*.

Then we define the noncommutative tautological quaternionic line bundle and its dual as noncommutative complex vector bundles associated through the contragredient representation V_f^{\vee} of the fundamental represention of $SU_q(2)$ and the fundamental represention V_f itself, respectively.

Quantum quaternionic line bundles

Theorem

For any $n \in \mathbb{N} \setminus \{0\}$ and $0 < q \leq 1$, the noncommutative tautological quaternionic line bundle and its dual are not stably trivial as noncommutative complex vector bundles, i.e., the finitely generated projective left $C(\mathbb{HP}_q^n)$ -modules $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f^{\vee}$ and $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f$ are not stably free.

Quantum quaternionic line bundles

Theorem

For any $n \in \mathbb{N} \setminus \{0\}$ and $0 < q \leq 1$, the noncommutative tautological quaternionic line bundle and its dual are not stably trivial as noncommutative complex vector bundles, i.e., the finitely generated projective left $C(\mathbb{HP}_q^n)$ -modules $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f^{\vee}$ and $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f$ are not stably free.

<u>Proof outline</u>: There exists an $SU_q(2)$ -equivariant *-homomorphism $C(S_q^{4n+3}) \rightarrow C(SU_q(2)) \circledast^{\Delta} C(SU_q(2)) =: C(S_q^7)$. Hence, by the main theorem, it suffices to prove that the left $C(\mathbb{HP}_q^1)$ -modules $\mathcal{P}_{SU_q(2)}(S_q^7) \Box V_f^{\vee}$ and $\mathcal{P}_{SU_q(2)}(S_q^7) \Box V_f$ are not stably free.

Quantum quaternionic line bundles

Theorem

For any $n \in \mathbb{N} \setminus \{0\}$ and $0 < q \leq 1$, the noncommutative tautological quaternionic line bundle and its dual are not stably trivial as noncommutative complex vector bundles, i.e., the finitely generated projective left $C(\mathbb{HP}_q^n)$ -modules $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f$ and $\mathcal{P}_{SU_q(2)}(S_q^{4n+3}) \Box V_f$ are not stably free.

 $\begin{array}{l} \underline{\operatorname{Proof outline:}} \text{ There exists an } SU_q(2)\text{-equivariant *-homomorphism}\\ \overline{C(S_q^{4n+3})} \to C(SU_q(2)) \circledast^\Delta C(SU_q(2)) =: C(S_q^7). \text{ Hence, by the}\\ \text{main theorem, it suffices to prove that the left } C(\mathbb{HP}_q^1)\text{-modules}\\ \mathcal{P}_{SU_q(2)}(S_q^7) \Box V_f^{\vee} \text{ and } \mathcal{P}_{SU_q(2)}(S_q^7) \Box V_f \text{ are not stably free.}\\ \text{Furthermore, for any finite-dimensional representation } V \text{ of a}\\ \text{compact quantum group } (H, \Delta), \text{ the associated finitely-generated}\\ \text{projective module } (H \circledast^\Delta H) \Box_H V \text{ is represented by a Milnor}\\ \text{idempotent } p_{U^{-1}}, \text{ where } U \text{ is a matrix of the representation } V. \text{ If}\\ H := C(SU_q(2)) \text{ and } V \text{ is } V_f^{\vee} \text{ or } V_f, \text{ then } (H \circledast^\Delta H) \Box_H V \text{ is not}\\ \text{stably free by the non-vanishing of an index paring of } U. \end{array}$

Quantum quaternionic principal bundles

Let (H, Δ) be a compact quantum group acting freely on a unital C*-algebra A. It follows from Hopf-Galois theory that, if there exists an H-equivariant *-homomorphism $H \to A$, then the associated A^{coH} -module $\mathcal{P}_H(A) \Box V$ is free for any left $\mathcal{O}(H)$ -comodule V.

Quantum quaternionic principal bundles

Let (H, Δ) be a compact quantum group acting freely on a unital C*-algebra A. It follows from Hopf-Galois theory that, if there exists an H-equivariant *-homomorphism $H \to A$, then the associated A^{coH} -module $\mathcal{P}_H(A) \Box V$ is free for any left $\mathcal{O}(H)$ -comodule V.

Consequently, the quantum principal $SU_q(2)$ -bundle $S_q^{4n+3} \to \mathbb{HP}_q^n$ is *not* trivializable:

Corollary

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism

 $f: C(SU_q(2)) \longrightarrow C(S_q^{4n+3}).$