NONCOMMUTATIVE BORSUK–ULAM TYPE CONJECTURES

Mariusz Tobolski (IMPAN / University of Warsaw)

Trieste, February 2017

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^n \to S^{n-1}$.

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^n \to S^{n-1}$.

Theorem (join formulation)

Let *n* be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:

Equivariant join construction

For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:

If X is a compact Hausdorff space with a continuous free action of a (locally) compact Hausdorff group G, then the diagonal action of G on the join X * G is again continuous and free.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:

If X is a compact Hausdorff space with a continuous free action of a (locally) compact Hausdorff group G, then the diagonal action of G on the join X * G is again continuous and free. In particular, for the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^{n-1} , we obtain a $\mathbb{Z}/2\mathbb{Z}$ -equivariant identification $S^n \cong S^{n-1} * \mathbb{Z}/2\mathbb{Z}$ for the antipodal and diagonal actions respectively.

Let us use the notation $E_nG := \underbrace{G * \ldots * G}_{n+1}$.

Let us use the notation
$$E_nG := \underbrace{G * \ldots * G}_{n+1}$$
.

Definition (G-space index)

Let G be a finite group, |G|>1 and let X be a $G\mbox{-space}.$ We define

 $ind_G(X) := \min\{n : \exists G - \text{equivariant map } X \to E_nG\}.$

Let us use the notation
$$E_nG := \underbrace{G * \dots * G}_{n+1}$$
.

Definition (G-space index)

Let G be a finite group, |G|>1 and let X be a $G\mbox{-space}.$ We define

 $ind_G(X) := \min\{n : \exists G - \text{equivariant map } X \to E_nG\}.$

Theorem (Properties of the index)

• $ind_G(X) > ind_G(Y) \Rightarrow$ there is no equivariant map $X \to Y$, • $ind_F(F, C) = n$

•
$$ind_G(E_nG) = n_i$$

Let us use the notation
$$E_nG := \underbrace{G * \dots * G}_{n+1}$$
.

Definition (G-space index)

Let G be a finite group, |G|>1 and let X be a $G\mbox{-space}.$ We define

 $ind_G(X) := \min\{n : \exists G - \text{equivariant map } X \to E_nG\}.$

Theorem (Properties of the index)

- $ind_G(X) > ind_G(Y) \Rightarrow$ there is no equivariant map $X \to Y$,
- $ind_G(E_nG) = n$,
- $ind_G(X * Y) \leq ind_G(X) + ind_G(Y) + 1$,
- $ind_G(X * G) = ind_G(X) + 1.$

Join formulation and classical generalization

The join formulation of Borsuk-Ulam theorem naturally leads to:

Conjecture (P. Baum, L. Dąbrowski, P. M. Hajac)

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Join formulation and classical generalization

The join formulation of Borsuk-Ulam theorem naturally leads to:

Conjecture (P. Baum, L. Dąbrowski, P. M. Hajac)

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Corollary

Ageev's conjecture about the Menger compacta.

Join formulation and classical generalization

The join formulation of Borsuk-Ulam theorem naturally leads to:

Conjecture (P. Baum, L. Dąbrowski, P. M. Hajac)

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Corollary

Ageev's conjecture about the Menger compacta.

Corollary to a corollary

The weaker version of the Hilbert-Smith conjecture.

Now we go partially noncommutative as groups remain classical.

Now we go partially noncommutative as groups remain classical.

Let A be a unital C*-algebra and let G be a compact Hausdorff group. Let us introduce a notion dual to the G action on A.

Now we go partially noncommutative as groups remain classical.

Let A be a unital C*-algebra and let G be a compact Hausdorff group. Let us introduce a notion dual to the G action on A.

Definition

Let $\delta:A\to A\otimes C(G)$ be an injective unital *-homomorphism. We call such δ a coaction of C(G) on A if we have that

 $(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$ (coassociativity)

 $(\delta(a)(1 \otimes h) \mid a \in A, h \in C(G) \}^{cls} = A \otimes C(G) \text{ (counitality)}$

Now we go partially noncommutative as groups remain classical.

Let A be a unital C*-algebra and let G be a compact Hausdorff group. Let us introduce a notion dual to the G action on A.

Definition

Let $\delta:A\to A\otimes C(G)$ be an injective unital *-homomorphism. We call such δ a coaction of C(G) on A if we have that

$$(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$$
 (coassociativity)

$$(\delta(a)(1 \otimes h) \mid a \in A, \ h \in C(G) \}^{cls} = A \otimes C(G) \text{ (counitality)}$$

Definition (D. A. Ellwood)

We say that the coaction δ is free when

$$\{(x \otimes 1)\delta(y) \mid x, y \in A\}^{cls} = A \otimes C(G).$$

There is yet another equivalent notion of a free action for (locally) compact abelian groups.

There is yet another equivalent notion of a free action for (locally) compact abelian groups.

Definition

Suppose a compact abelian group G acts on a unital C*-algebra A via $\alpha: G \to Aut(A)$. This gives rise to homogeneous subspaces $A_{\tau} = \{a \in A : \alpha_g(a) = \tau(g) \; \forall g \in G\}$, which are defined for any $\tau \in \hat{G}$, the Pontryagin dual of G. The action is free if and only if for each $\tau \in \hat{G}$, $\overline{A_{\tau}AA_{\tau}^*} = A$.

There is yet another equivalent notion of a free action for (locally) compact abelian groups.

Definition

Suppose a compact abelian group G acts on a unital C*-algebra A via $\alpha: G \to Aut(A)$. This gives rise to homogeneous subspaces $A_{\tau} = \{a \in A : \alpha_g(a) = \tau(g) \ \forall g \in G\}$, which are defined for any $\tau \in \hat{G}$, the Pontryagin dual of G. The action is free if and only if for each $\tau \in \hat{G}$, $\overline{A_{\tau}AA_{\tau}^*} = A$.

Example 1

For $G = \mathbb{Z}/2\mathbb{Z}$, we get even and odd elements as subspaces.

There is yet another equivalent notion of a free action for (locally) compact abelian groups.

Definition

Suppose a compact abelian group G acts on a unital C*-algebra A via $\alpha: G \to Aut(A)$. This gives rise to homogeneous subspaces $A_{\tau} = \{a \in A : \alpha_g(a) = \tau(g) \ \forall g \in G\}$, which are defined for any $\tau \in \hat{G}$, the Pontryagin dual of G. The action is free if and only if for each $\tau \in \hat{G}$, $\overline{A_{\tau}AA_{\tau}^*} = A$.

Example 1

For $G = \mathbb{Z}/2\mathbb{Z}$, we get even and odd elements as subspaces.

Example 2

Let $G = \mathbb{Z}/p\mathbb{Z}$ for a prime number p. Then $\widehat{\mathbb{Z}/p\mathbb{Z}} = \mathbb{Z}/p\mathbb{Z}$, given by the pth roots of unity. Then $A_n = \{a \in A : \alpha(a) = e^{2\pi i n/p}a\}$.

Noncommutative equivariant joins

Let us focus on a specific type of C*-algebras called join C*-algebras.

Noncommutative equivariant joins

Let us focus on a specific type of C*-algebras called join C*-algebras.

Definition

Let δ be a coaction of C(G) on A. Then we define the noncommutative join of A and C(G) as:

$$A \circledast C(G) = \left\{ f \in C([0,1], A \otimes C(G)) \middle| f(0) \in C(G), f(1) \in A \right\}.$$

We can make the above join into a noncommutative G-space with the diagonal action.

Notation: $\mathbb{Z}/p := \mathbb{Z}/p\mathbb{Z}$.

Notation: $\mathbb{Z}/p := \mathbb{Z}/p\mathbb{Z}$.

Lemma

Let \mathbb{Z}/k , $k \geq 2$, act freely on itself by multiplication. Equip \mathbb{C} with the \mathbb{Z}/k action, $z \mapsto e^{2\pi i/k}z$. If $n \geq 2$ and $f_1, ..., f_n \in C(E_{2n}\mathbb{Z}/k)$ are equivariant for these actions, then $f_1, ..., f_n$ have a common zero.

Notation: $\mathbb{Z}/p := \mathbb{Z}/p\mathbb{Z}$.

Lemma

Let \mathbb{Z}/k , $k \geq 2$, act freely on itself by multiplication. Equip \mathbb{C} with the \mathbb{Z}/k action, $z \mapsto e^{2\pi i/k}z$. If $n \geq 2$ and $f_1, ..., f_n \in C(E_{2n}\mathbb{Z}/k)$ are equivariant for these actions, then $f_1, ..., f_n$ have a common zero.

The above lemma is proved by using:

Theorem (Dold)

Let G be a finite group with |G| > 1. Let X be an n-connected G-space, and let Y be a free paracompact G-space of dimension at most n. Then there is no equivariant map $X \to Y$.

Notation: $\mathbb{Z}/p := \mathbb{Z}/p\mathbb{Z}$.

Lemma

Let \mathbb{Z}/k , $k \geq 2$, act freely on itself by multiplication. Equip \mathbb{C} with the \mathbb{Z}/k action, $z \mapsto e^{2\pi i/k}z$. If $n \geq 2$ and $f_1, ..., f_n \in C(E_{2n}\mathbb{Z}/k)$ are equivariant for these actions, then $f_1, ..., f_n$ have a common zero.

The above lemma is proved by using:

Theorem (Dold)

Let G be a finite group with |G| > 1. Let X be an n-connected G-space, and let Y be a free paracompact G-space of dimension at most n. Then there is no equivariant map $X \to Y$.

Some more properties of the index used in the proof:

- if X is n-connected, then $ind_G(X)$, then $ind_G(X) \ge n+1$,
- if Y is a free paracompact G-space of dimension n, then ind_G(Y) ≤ n.

Theorem (B. Passer)

Let A a unital C*-algebra. If $\delta : A \to A \otimes C(G)$ is a free coaction for a compact Hausdorff group G with torsion, then there does not exist an equivariant unital C*-algebra homomorphism $A \to A \circledast C(G)$.

Theorem (B. Passer)

Let A a unital C*-algebra. If $\delta : A \to A \otimes C(G)$ is a free coaction for a compact Hausdorff group G with torsion, then there does not exist an equivariant unital C*-algebra homomorphism $A \to A \circledast C(G)$.

Proof outline: If G has torsion elements, then the problem can be reduced to \mathbb{Z}/p action on A.

Theorem (B. Passer)

Let A a unital C*-algebra. If $\delta : A \to A \otimes C(G)$ is a free coaction for a compact Hausdorff group G with torsion, then there does not exist an equivariant unital C*-algebra homomorphism $A \to A \circledast C(G)$.

Proof outline: If G has torsion elements, then the problem can be reduced to \mathbb{Z}/p action on A.

We assume that such equivariant map exists and apply it in succession producing a chain

$$A \to A \circledast C(G) \to A \circledast C(G) \circledast C(G) \to \dots$$

of equivariant maps.

For any n, we obtain an equivariant unital *-homomorphism

$$\phi_n: A \to \underbrace{C(\mathbb{Z}/k) \circledast \dots \circledast C(\mathbb{Z}/k)}_{n+1} \simeq C(E_n \mathbb{Z}/k).$$

For any n, we obtain an equivariant unital *-homomorphism

$$\phi_n : A \to \underbrace{C(\mathbb{Z}/k) \circledast \dots \circledast C(\mathbb{Z}/k)}_{n+1} \simeq C(E_n \mathbb{Z}/k).$$

The action is saturated, therefore for a given $\tau \in \widehat{\mathbb{Z}/k}$ there is a finite m and $a_1, ..., a_m, b_1, ..., b_m \in A_{\tau}$, such that $\sum a_i b_i^*$ is invertible in A.

For any n, we obtain an equivariant unital *-homomorphism

$$\phi_n : A \to \underbrace{C(\mathbb{Z}/k) \circledast \dots \circledast C(\mathbb{Z}/k)}_{n+1} \simeq C(E_n \mathbb{Z}/k).$$

The action is saturated, therefore for a given $\tau \in \widehat{\mathbb{Z}/k}$ there is a finite m and $a_1, ..., a_m, b_1, ..., b_m \in A_{\tau}$, such that $\sum a_i b_i^*$ is invertible in A.

Then for m = n, we have that $\phi_{2n}(a_1), ..., \phi_{2n}(a_n) \in C(E_n \mathbb{Z}/k)$ do not have common zeros, which contradicts the previous lemma.

Thanks!