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The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If f : Sn → Rn is continuous,
then there exists a pair (p,−p) of antipodal points on Sn such
that f(p) = f(−p).

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn → Sn−1.

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn−1 ∗ Z/2Z→ Sn−1.
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Equivariant join construction

For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a (locally) compact Hausdorff group G, then the diagonal action of
G on the join X ∗G is again continuous and free. In particular, for
the antipodal action of Z/2Z on Sn−1, we obtain a
Z/2Z-equivariant identification Sn ∼= Sn−1 ∗ Z/2Z for the
antipodal and diagonal actions respectively.
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Index of G-spaces for finite groups

Let us use the notation EnG := G ∗ ... ∗G︸ ︷︷ ︸
n+1

.

Definition (G-space index)

Let G be a finite group, |G| > 1 and let X be a G-space. We
define

indG(X) := min{n : ∃ G− equivariant map X → EnG}.

Theorem (Properties of the index)

indG(X) > indG(Y )⇒ there is no equivariant map X → Y ,

indG(EnG) = n,

indG(X ∗ Y ) ≤ indG(X) + indG(Y ) + 1,

indG(X ∗G) = indG(X) + 1.
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Join formulation and classical generalization

The join formulation of Borsuk-Ulam theorem naturally leads to:

Conjecture (P. Baum, L. D ↪abrowski, P. M. Hajac)

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X ∗G, there does not exist a
G-equivariant continuous map f : X ∗G→ X.

Corollary

Ageev’s conjecture about the Menger compacta.

Corollary to a corollary

The weaker version of the Hilbert-Smith conjecture.
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Free actions on C*-algebras

Now we go partially noncommutative as groups remain classical.

Let A be a unital C*-algebra and let G be a compact Hausdorff
group. Let us introduce a notion dual to the G action on A.

Definition

Let δ : A→ A⊗ C(G) be an injective unital *-homomorphism.
We call such δ a coaction of C(G) on A if we have that

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity)

2 {δ(a)(1⊗ h) | a ∈ A, h ∈ C(G)}cls = A⊗C(G) (counitality)

Definition (D. A. Ellwood)

We say that the coaction δ is free when

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A⊗ C(G).
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Free actions on C*-algebras

There is yet another equivalent notion of a free action for (locally)
compact abelian groups.

Definition

Suppose a compact abelian group G acts on a unital C*-algebra A
via α : G→ Aut(A). This gives rise to homogeneous subspaces
Aτ = {a ∈ A : αg(a) = τ(g) ∀g ∈ G}, which are defined for any
τ ∈ Ĝ, the Pontryagin dual of G. The action is free if and only if
for each τ ∈ Ĝ, AτAA∗

τ = A.

Example 1

For G = Z/2Z, we get even and odd elements as subspaces.

Example 2

Let G = Z/pZ for a prime number p. Then Ẑ/pZ = Z/pZ, given
by the pth roots of unity. Then An = {a ∈ A : α(a) = e2πin/pa}.
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Noncommutative equivariant joins

Let us focus on a specific type of C*-algebras called join
C*-algebras.

Definition

Let δ be a coaction of C(G) on A. Then we define the
noncommutative join of A and C(G) as:

A~ C(G) =
{
f ∈ C([0, 1], A⊗ C(G))

∣∣∣f(0) ∈ C(G), f(1) ∈ A
}
.

We can make the above join into a noncommutative G-space with
the diagonal action.
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Rephrasing classical results

Notation: Z/p := Z/pZ.

Lemma

Let Z/k, k ≥ 2, act freely on itself by multiplication. Equip C with
the Z/k action, z 7→ e2πi/kz. If n ≥ 2 and f1, ..., fn ∈ C(E2nZ/k)
are equivariant for these actions, then f1, ..., fn have a common
zero.

The above lemma is proved by using:

Theorem (Dold)

Let G be a finite group with |G| > 1. Let X be an n-connected
G-space, and let Y be a free paracompact G-space of dimension at
most n. Then there is no equivariant map X → Y .

Some more properties of the index used in the proof:

if X is n-connected, then indG(X), then indG(X) ≥ n+ 1,

if Y is a free paracompact G-space of dimension n, then
indG(Y ) ≤ n.
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Main theorem

Theorem (B. Passer)

Let A a unital C*-algebra. If δ : A→ A⊗ C(G) is a free coaction
for a compact Hausdorff group G with torsion, then there does not
exist an equivariant unital C*-algebra homomorphism
A→ A~ C(G).

Proof outline: If G has torsion elements, then the problem can be
reduced to Z/p action on A.
We assume that such equivariant map exists and apply it in
succession producing a chain

A→ A~ C(G)→ A~ C(G) ~ C(G)→ ...

of equivariant maps.
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Main theorem

For any n, we obtain an equivariant unital *-homomorphism

φn : A→ C(Z/k) ~ ...~ C(Z/k)︸ ︷︷ ︸
n+1

' C(EnZ/k).

The action is saturated, therefore for a given τ ∈ Ẑ/k there is a
finite m and a1, ..., am, b1, ..., bm ∈ Aτ , such that

∑
aib

∗
i is

invertible in A.
Then for m = n, we have that φ2n(a1), ..., φ2n(an) ∈ C(EnZ/k)
do not have common zeros, which contradicts the previous lemma.
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Thanks!


