25 May 2016

THERE AND BACK AGAIN: FROM THE BORSUK-ULAM THEOREM TO QUANTUM SPACES

Piotr M. Hajac (IMPAN / University of New Brunswick)
Tatiana Shulman (IMPAN)

Based on joint work of Piotr M. Hajac with Paul F. Baum, Ludwik Dąbrowski and Tomasz Maszczyk

Jiří Matoušek

Using the Borsuk-Ulam Theorem

Lectures on Topological Methods in Combinatorics and Geometry

Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior Professors, Postdocs, or PhD Students).

Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior Professors, Postdocs, or PhD Students).

Noncommutative Geometry the Next Generation

4–17 September, Będlewo & Warsaw, Master Class on:

Noncommutative geometry and quantum groups

- Cyclic homology by Masoud Khalkhali and Ryszard Nest
- Noncommutative index theory by Nigel Higson and Erik Van Erp
- Topological quantum groups and Hopf algebras by Alfons Van Daele and Stanisław L. Woronowicz
- Structure and classification of C*-algebras by Stuart White and Joachim Zacharias

Noncommutative Geometry the Next Generation

4–17 September, Będlewo & Warsaw, Master Class on:

Noncommutative geometry and quantum groups

- Cyclic homology by Masoud Khalkhali and Ryszard Nest
- Noncommutative index theory by Nigel Higson and Erik Van Erp
- Topological quantum groups and Hopf algebras by Alfons Van Daele and Stanisław L. Woronowicz
- Structure and classification of C*-algebras by Stuart White and Joachim Zacharias

19 September – 14 October, 20-hour lecture courses:

- An invitation to C*-algebras by Karen R. Strung
- 2 An invitation to Hopf algebras by Réamonn Ó Buachalla
- Noncommutative topology for beginners by Tatiana Shulman

17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

- 17–21 Oct. Cyclic homology J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz
- **3** 14–18 Nov. Topological quantum groups and Hopf algebras K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski
- 21–25 Nov. Structure and classification of C*-algebras
 G. Elliott, K. R. Strung, W. Winter, J. Zacharias

18-22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th birthday organized by Alan Carey, George Elliott, Piotr M. Hajac, and Ryszard Nest.

18–22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th birthday organized by Alan Carey, George Elliott, Piotr M. Hajac, and Ryszard Nest.

Sponsored by:

- The Fields Institute, University of Toronto, Canada
- National Science Foundation, USA
- The Pennsylvania State University, USA

What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C^* -algebra H with a given unital *-homorphism $\Delta\colon H\longrightarrow H\otimes_{\min}H$ such that the diagram

commutes and the two-sided cancellation property holds:

$$\{(a\otimes 1)\Delta(b)\mid a,b\in H\}^{\operatorname{cls}}=H\underset{\min}{\otimes} H=\{\Delta(a)(1\otimes b)\mid a,b\in H\}^{\operatorname{cls}}.$$

Here "cls" stands for "closed linear span".

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta:A\to A\otimes_{\min}H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H,Δ) on A) iff

- $\textbf{0} \ (\delta \otimes \mathrm{id}) \circ \delta = (\mathrm{id} \otimes \Delta) \circ \delta \ \text{(coassociativity)},$
- \bullet ker $\delta = 0$ (injectivity).

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta:A\to A\otimes_{\min}H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H,Δ) on A) iff

- **3** $\ker \delta = 0$ (injectivity).

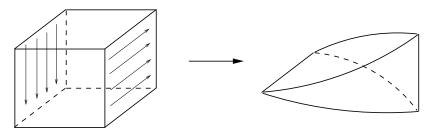
Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\boxed{\{(x\otimes 1)\delta(y)\mid x,y\in A\}^{\mathrm{cls}}=A\underset{\min}{\otimes} H}.$$

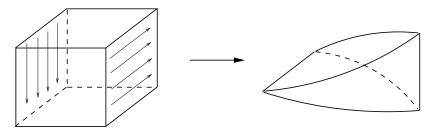
Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



Equivariant join construction

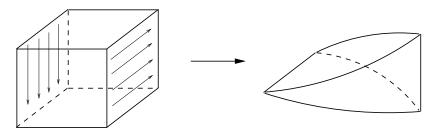
For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join $X\ast G$ is again continuous and free.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X*Y as the quotient of $[0,1]\times X\times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join X*G is again continuous and free. In particular, for the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^{n-1} , we obtain a $\mathbb{Z}/2\mathbb{Z}$ -equivariant identification $S^n \cong S^{n-1}*\mathbb{Z}/2\mathbb{Z}$ for the antipodal and diagonal actions respectively.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X*G, there does not exist a G-equivariant continuous map $f:X*G\to X$.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X*G, there does not exist a G-equivariant continuous map $f:X*G\to X$.

Claimed to be proven by Alexandru Chirvasitu and Benjamin Passer on 7 April 2016.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X*G, there does not exist a G-equivariant continuous map $f:X*G\to X$.

Claimed to be proven by Alexandru Chirvasitu and Benjamin Passer on 7 April 2016.

Corollary

Ageev's conjecture about the Menger compacta.

Gauged equivariant join construction

If Y=G, we can construct the join G-space X*Y in a different manner: at 0 we collapse $X\times G$ to G as before, and at 1 we collapse $X\times G$ to $(X\times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h')$$
, where $xh = x'h'$.

Gauged equivariant join construction

If Y=G, we can construct the join G-space X*Y in a different manner: at 0 we collapse $X\times G$ to G as before, and at 1 we collapse $X\times G$ to $(X\times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h')$$
, where $xh = x'h'$.

More precisely, let R_J^\prime be the equivalence relation on $I\times X\times G$ generated by

$$(0, x, h) \sim (0, x', h)$$
 and $(1, x, h) \sim (1, x', h')$, where $xh = x'h'$.

The formula [(t,x,h)]k := [(t,x,hk)] defines a continuous right G-action on $(I \times X \times G)/R'_I$, and the formula

$$X * G \ni [(t, x, h)] \longmapsto [(t, xh^{-1}, h)] \in (I \times X \times G)/R'_I$$

yields a G-equivariant homeomorphism.

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1], A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \overset{\delta}{\circledast} H := \left\{ f \in C([0,1], A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

$$\mathrm{id} \otimes \Delta \colon \ C([0,1],A) \underset{\mathrm{min}}{\otimes} H \ \longrightarrow \ C([0,1],A) \underset{\mathrm{min}}{\otimes} H \underset{\mathrm{min}}{\otimes} H$$

defines a free action of the compact quantum group (H,Δ) on the equivariant join C*-algebra $A\circledast^{\delta}H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \otimes^{\delta} H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \otimes^{\delta} H$.

The classical cases

If X is a compact Hausdorff principal G-bundle, A=C(X) and H=C(G), then Conjecture 2 states that the principal G-bundle $X\ast G$ is not trivializable unless G is trivial. This is clearly true because otherwise $G\ast G$ would be trivializable, which is tantamount to G being contractible, and the only contractible compact Hausdorff group is trivial.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H,Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \otimes^{\delta} H$.

The classical cases

If X is a compact Hausdorff principal G-bundle, A=C(X) and H=C(G), then Conjecture 2 states that the principal G-bundle $X\ast G$ is not trivializable unless G is trivial. This is clearly true because otherwise $G\ast G$ would be trivializable, which is tantamount to G being contractible, and the only contractible compact Hausdorff group is trivial. Conjecture 1 was claimed to be true only 48 days ago, and has some serious consequences.

Iterated joins of the quantum SU(2) group

Consider the fibration defining the quaternionic projective space:

$$SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$$

To obtain a q-deformation of this fibration, we take $H:=C(SU_q(2))$ and $A:=C(S_q^{4n+3})$ equal to the n-times iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is not trivializable:

Theorem (main)

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism $f: C(SU_q(2)) \longrightarrow C(S_q^{4n+3}) \otimes^{\delta} C(SU_q(2))$.

Iterated joins of the quantum SU(2) group

Consider the fibration defining the quaternionic projective space:

$$SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$$

To obtain a q-deformation of this fibration, we take $H:=C(SU_q(2))$ and $A:=C(S_q^{4n+3})$ equal to the n-times iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is not trivializable:

Theorem (main)

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism $f: C(SU_q(2)) \longrightarrow C(S_q^{4n+3}) \circledast^{\delta} C(SU_q(2))$.

Proof outline: If f existed, there would be an equivariant map F $C(SU_q(2)) \to C(S_q^{4n+3}) \circledast^{\delta} C(SU_q(2)) \to C(SU_q(2)) \circledast^{\Delta} C(SU_q(2))$. Furthermore, for any finite-dimensional representation V of a compact quantum group (H, Δ) , the associated finitely-generated projective module $(H \circledast^{\Delta} H) \square_H V$ is represented by a Milnor idempotent $p_{U^{-1}}$, where U is a matrix of the representation V. If $H := C(SU_q(2))$ and V is the fundamental representation of $SU_q(2)$, then $(H \circledast^{\Delta} H) \square_H V$ is not stably free by an index paring calculation. This contradicts the existence of F.

Quantum Dynamics, 2016–2019

Research and Innovation Staff Exchange network of: IMPAN (Poland), University of Warsaw (Poland), University of Łódź (Poland), University of Glasgow (G. Britain), University of Aberdeen (G. Britain), University of Copenhagen (Denmark), University of Münster (Germany), Free University of Brussels (Belgium), SISSA (Italy), Penn State University (USA), University of Colorado at Boulder (USA), University of Kansas at Lawrence (USA), University of California at Berkeley (USA), University of Denver (USA), Fields Institute (Canada), University of New Brunswick at Fredericton (Canada), University of Wollongong (Australia), Australian National University (Australia), University of Otago (New Zealand), University Michoacana de San Nicolás de Hidalgo (Mexico).

HORIZON 2020

The EU Framework Programme for Research and Innovation