Małopolska, 26 April 2016

THERE AND BACK AGAIN: FROM THE BORSUK-ULAM THEOREM TO QUANTUM SPACES

Piotr M. Hajac (IMPAN / University of New Brunswick) Réamonn Ó Buachalla (IMPAN)

Joint work with Paul F. Baum, Ludwik Dąbrowski and Tomasz Maszczyk

• Our quest to unravel topological mysteries in the Middle Earth of quantum spaces will begin with gentle preparations in the Shire of elementary topology.

- Our quest to unravel topological mysteries in the Middle Earth of quantum spaces will begin with gentle preparations in the Shire of elementary topology.
- Then, after riding swiftly through the Rohan of C*-algebras and Gelfand-Naimark Theorems and carefully avoiding the Mordor of incomprehensible technicalities, we shall arrive in the Gondor of compact quantum groups acting on unital C*-algebras.

- Our quest to unravel topological mysteries in the Middle Earth of quantum spaces will begin with gentle preparations in the Shire of elementary topology.
- Then, after riding swiftly through the Rohan of C*-algebras and Gelfand-Naimark Theorems and carefully avoiding the Mordor of incomprehensible technicalities, we shall arrive in the Gondor of compact quantum groups acting on unital C*-algebras.
- It is therein that the generalized Borsuk-Ulam-type statements dwell waiting to be proven or disproven.

- Our quest to unravel topological mysteries in the Middle Earth of quantum spaces will begin with gentle preparations in the Shire of elementary topology.
- Then, after riding swiftly through the Rohan of C*-algebras and Gelfand-Naimark Theorems and carefully avoiding the Mordor of incomprehensible technicalities, we shall arrive in the Gondor of compact quantum groups acting on unital C*-algebras.
- It is therein that the generalized Borsuk-Ulam-type statements dwell waiting to be proven or disproven.
- We end by paying tribute to the ancient quantum group $SU_q(2)$, and showing the non-trivializability of the $SU_q(2)$ compact quantum principal bundle $S_q^{4n+3} \to \mathbb{H}P_q^n$ defining noncommutative quaternionic projective spaces. This is the main result, which is a special case of the type II noncommutative Borsuk-Ulam conjecture.

Jiří Matoušek

Lectures on Topological Methods in Combinatorics and Geometry

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Assuming that both temperature and pressure are continuous functions, we can conclude that there are always two antipodal points on Earth with exactly the same pressure and temperature.

Theorem (Borsuk-Ulam)

Let n be a positive natural number. If $f: S^n \to \mathbb{R}^n$ is continuous, then there exists a pair (p, -p) of antipodal points on S^n such that f(p) = f(-p).

Assuming that both temperature and pressure are continuous functions, we can conclude that there are always two antipodal points on Earth with exactly the same pressure and temperature.

The logical negation of the theorem

There exists a continuous map $f: S^n \to \mathbb{R}^n$ such that for all pairs (p, -p) of antipodal points on S^n we have $f(p) \neq f(-p)$.

For the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n and $\mathbb{R}^n,$ the latter statement is equivalent to:

Equivalent negation

There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^n \to S^{n-1}$.

For the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n and $\mathbb{R}^n,$ the latter statement is equivalent to:

Equivalent negation

There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f} \colon S^n \to S^{n-1}$.

Indeed, if $f: S^n \to \mathbb{R}^n$ is a continuous map with $f(p) \neq f(-p)$, then the formula $\widetilde{f}(p) := -f(p) - f(-p)$

$$f(p) := \frac{f(p) - f(-p)}{\|f(p) - f(-p)\|}$$

defines a continuous $\mathbb{Z}/2\mathbb{Z}$ -equivariant map from S^n to S^{n-1} .

For the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n and \mathbb{R}^n , the latter statement is equivalent to:

Equivalent negation

There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^n \to S^{n-1}$.

Indeed, if $f: S^n \to \mathbb{R}^n$ is a continuous map with $f(p) \neq f(-p)$, then the formula

 $\widetilde{f}(p) := \frac{f(p) - f(-p)}{\|f(p) - f(-p)\|}$

defines a continuous $\mathbb{Z}/2\mathbb{Z}$ -equivariant map from S^n to S^{n-1} . Also, composing any such a map with the inclusion map $S^{n-1} \subset \mathbb{R}^n$ yields a nowhere vanishing continuous map $f: S^n \to \mathbb{R}^n$ with $f(-p) = -f(p) \neq f(p)$.

For the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n and $\mathbb{R}^n,$ the latter statement is equivalent to:

Equivalent negation

There exists a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f} \colon S^n \to S^{n-1}$.

Indeed, if $f: S^n \to \mathbb{R}^n$ is a continuous map with $f(p) \neq f(-p)$, then the formula $\widetilde{f}(p) := \frac{f(p) - f(-p)}{\|f(p) - f(-p)\|}$

defines a continuous $\mathbb{Z}/2\mathbb{Z}$ -equivariant map from S^n to S^{n-1} . Also, composing any such a map with the inclusion map $S^{n-1} \subset \mathbb{R}^n$ yields a nowhere vanishing continuous map $f: S^n \to \mathbb{R}^n$ with $f(-p) = -f(p) \neq f(p)$. Consequently, the Borsuk-Ulam Theorem is equivalent to:

Theorem (equivariant formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^n \to S^{n-1}$.

Famous corollaries

Theorem (The Brouwer Fixed Point Theorem)

Let n be any positive integer, and B^n be a ball of dimension n. Then every continuous map $f: B^n \to B^n$ possesses a fixed point.

Famous corollaries

Theorem (The Brouwer Fixed Point Theorem)

Let n be any positive integer, and B^n be a ball of dimension n. Then every continuous map $f: B^n \to B^n$ possesses a fixed point.

Theorem (The sandwich theorem)

Let n be any positive integer. Given n measurable "objects" in the n-dimensional Euclidean space, it is possible to divide all of them in half (with respect to their measure, i.e. volume) with a single (n-1)-dimensional hyperplane.

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

a topologically closed set in the norm topology of operators,

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

- I a topologically closed set in the norm topology of operators,
- 2 closed under the operation of taking adjoints of operators.

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

- a topologically closed set in the norm topology of operators,
- **2** closed under the operation of taking adjoints of operators.

We call it *unital* iff it contains the identity operator.

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

- a topologically closed set in the norm topology of operators,
- **2** closed under the operation of taking adjoints of operators.

We call it *unital* iff it contains the identity operator.

Theorem (Gelfand-Naimark)

Every commutative unital C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued functions on a compact Hausdorff space.

Definition (concrete)

A C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert that is:

- a topologically closed set in the norm topology of operators,
- **2** closed under the operation of taking adjoints of operators.

We call it *unital* iff it contains the identity operator.

Theorem (Gelfand-Naimark)

Every commutative unital C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued functions on a compact Hausdorff space.

Copernican-style revolution

Given a compact Hausdorff space of points, we can define the C*-algebra of functions on the space, but the central concept is that of a commutative C*-algebras, and points appear as characters (algebra homomorphisms into \mathbb{C}) rather than as primary objects. We think of noncommutative unital C*-algebras as algebras of functions on compact quantum spaces.

Banach-Simons Semester

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Banach-Simons Semester

SIMONS FOUNDATION

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior Professors, Postdocs, or PhD Students).

Banach-Simons Semester

SIMONS FOUNDATION

1 Sep – 30 Nov 2016, Simons Semester in the Banach Center NONCOMMUTATIVE GEOMETRY THE NEXT GENERATION

Paul F. Baum, Alan Carey, Piotr M. Hajac, Tomasz Maszczyk

Funding available for longer stays (Senior Professors and Junior Professors, Postdocs, or PhD Students).

 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla
- I9 September 14 October, 20-hour lecture course Noncommutative topology for beginners by Tatiana Shulman

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla
- I9 September 14 October, 20-hour lecture course Noncommutative topology for beginners by Tatiana Shulman
- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla
- I9 September 14 October, 20-hour lecture course Noncommutative topology for beginners by Tatiana Shulman
- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory
 P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla
- 19 September 14 October, 20-hour lecture course Noncommutative topology for beginners by Tatiana Shulman
- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory
 P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz
- 14–18 Nov. Topological quantum groups and Hopf algebras K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski

- 4–17 September, Będlewo & Warsaw, school on Noncommutative geometry and quantum groups
- I9 September 14 October, 20-hour lecture course An invitation to C*-algebras by Karen R. Strung
- 19 September 14 October, 20-hour lecture course An invitation to Hopf algebras by Réamonn Ó Buachalla
- I9 September 14 October, 20-hour lecture course Noncommutative topology for beginners by Tatiana Shulman
- 17–21 Oct. Cyclic homology
 J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest
- 24–28 Oct. Noncommutative index theory
 P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz
- 14–18 Nov. Topological quantum groups and Hopf algebras K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski
- 21–25 Nov. Structure and classification of C*-algebras
 G. Elliott, K. R. Strung, W. Winter, J. Zacharias

18-22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th birthday organized by Alan Carey, George Elliott, Piotr M. Hajac, and Ryszard Nest.

18-22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th birthday organized by Alan Carey, George Elliott, Piotr M. Hajac, and Ryszard Nest.

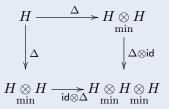
Sponsored by:

- The Fields Institute, University of Toronto, Canada
- National Science Foundation, USA
- The Pennsylvania State University, USA

FIELDS

Definition (S. L. Woronowicz)

A compact quantum group is a unital C^* -algebra H with a given unital *-homorphism $\Delta \colon H \longrightarrow H \otimes_{\min} H$ such that the diagram



commutes and the two-sided cancellation property holds:

$$\{(a\otimes 1)\Delta(b) \mid a, b \in H\}^{\operatorname{cls}} = H \underset{\min}{\otimes} H = \{\Delta(a)(1\otimes b) \mid a, b \in H\}^{\operatorname{cls}}.$$

Here "cls" stands for "closed linear span".

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta: A \to A \otimes_{\min} H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) iff

 $(\delta \otimes id) \circ \delta = (id \otimes \Delta) \circ \delta$ (coassociativity),

2 $\{\delta(a)(1 \otimes h) \mid a \in A, h \in H\}^{cls} = A \otimes_{\min} H$ (counitality)

3 ker $\delta = 0$ (injectivity).

Free actions of compact quantum groups

Let A be a unital C^* -algebra and $\delta: A \to A \otimes_{\min} H$ a unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) iff

 $\ \, {\bf 0} \ \, (\delta\otimes {\rm id})\circ\delta=({\rm id}\otimes\Delta)\circ\delta \ \, {\rm (coassociativity)},$

2 $\{\delta(a)(1 \otimes h) \mid a \in A, h \in H\}^{cls} = A \otimes_{\min} H$ (counitality)

3 ker $\delta = 0$ (injectivity).

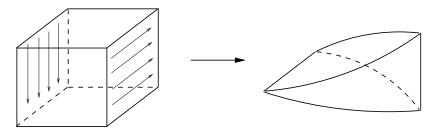
Definition (D. A. Ellwood)

A coaction δ is called free iff

$$\{(x \otimes 1)\delta(y) \mid x, y \in A\}^{\operatorname{cls}} = A \underset{\min}{\otimes} H$$

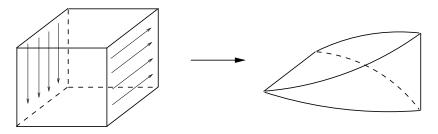
Equivariant join construction

For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:



Equivariant join construction

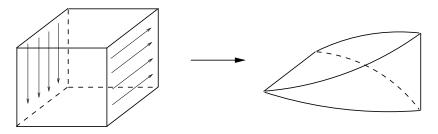
For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join X * G is again continuous and free.

Equivariant join construction

For any topological spaces X and Y, one defines the join space X * Y as the quotient of $[0,1] \times X \times Y$ by a certain equivalence relation:



If X is a compact Hausdorff space with a continuous free action of a compact Hausdorff group G, then the diagonal action of G on the join X * G is again continuous and free. In particular, for the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^{n-1} , we obtain a $\mathbb{Z}/2\mathbb{Z}$ -equivariant identification $S^n \cong S^{n-1} * \mathbb{Z}/2\mathbb{Z}$ for the antipodal and diagonal actions respectively.

Gauged equivariant join construction

If Y = G, we can construct the join G-space X * Y in a different manner: at 0 we collapse $X \times G$ to G as before, and at 1 we collapse $X \times G$ to $(X \times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h'), \text{ where } xh = x'h'$$

Gauged equivariant join construction

If Y = G, we can construct the join G-space X * Y in a different manner: at 0 we collapse $X \times G$ to G as before, and at 1 we collapse $X \times G$ to $(X \times G)/R_D$ instead of X. Here R_D is the equivalence relation generated by

$$(x,h) \sim (x',h'), \text{ where } xh = x'h' \Big|.$$

More precisely, let R'_J be the equivalence relation on $I\times X\times G$ generated by

 $(0,x,h)\sim (0,x',h) \quad \text{and} \quad (1,x,h)\sim (1,x',h'), \text{ where } xh=x'h'.$

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right *G*-action on $(I \times X \times G)/R'_J$, and the formula

 $X * G \ni [(t, x, h)] \longmapsto [(t, xh^{-1}, h)] \in (I \times X \times G)/R'_J$

yields a G-equivariant homeomorphism.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let *n* be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\widetilde{f} \colon S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Claimed to be proven by Alexandru Chirvasitu and Benjamin Passer on 7 April 2016.

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let *n* be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$ -equivariant continuous map $\tilde{f}: S^{n-1} * \mathbb{Z}/2\mathbb{Z} \to S^{n-1}$.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group G. Then, for the diagonal action of G on X * G, there does not exist a G-equivariant continuous map $f : X * G \to X$.

Claimed to be proven by Alexandru Chirvasitu and Benjamin Passer on 7 April 2016.

Corollary

Ageev's conjecture about the Menger compacta.

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Equivariant noncommutative join construction

Definition (L. Dąbrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,Δ) acting freely on a unital C*-algebra A, we define its equivariant join with H to be the unital C*-algebra

$$A \stackrel{\delta}{\circledast} H := \left\{ f \in C([0,1],A) \underset{\min}{\otimes} H \mid f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right\}.$$

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

$$\mathrm{id} \otimes \Delta \colon C([0,1],A) \underset{\min}{\otimes} H \longrightarrow C([0,1],A) \underset{\min}{\otimes} H \underset{\min}{\otimes} H$$

defines a free action of the compact quantum group (H, Δ) on the equivariant join C*-algebra $A \circledast^{\delta} H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \circledast^{\delta} H$.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \circledast^{\delta} H$.

The classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and H = C(G), then Conjecture 2 states that the principal G-bundle X * G is not trivializable unless G is trivial. This is clearly true because otherwise G * G would be trivializable, which is tantamount to G being contractible, and the only contractible compact Hausdorff group is trivial.

Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $A \to A \circledast^{\delta} H$.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a non-trivial compact quantum group (H, Δ) . Then there does not exist an H-equivariant *-homomorphism $H \to A \circledast^{\delta} H$.

The classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and H = C(G), then Conjecture 2 states that the principal G-bundle X * G is not trivializable unless G is trivial. This is clearly true because otherwise G * G would be trivializable, which is tantamount to G being contractible, and the only contractible compact Hausdorff group is trivial. Conjecture 1 was claimed to be true only 19 days ago, and has some serious consequences.

Iterated joins of the quantum SU(2) group

Consider the defining fibration of the quaternionic projective space: $SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$

To obtain a q-deformation of this fibration, we take $H = C(SU_q(2))$ and A equal to a finitely iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is *not* trivializable:

Theorem (main)

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism $f: C(SU_q(2)) \rightarrow A \circledast^{\delta} C(SU_q(2)).$

Iterated joins of the quantum SU(2) group

Consider the defining fibration of the quaternionic projective space: $SU(2) * \cdots * SU(2) \cong S^{4n+3}, \quad S^{4n+3}/SU(2) = \mathbb{H}P^n.$

To obtain a q-deformation of this fibration, we take $H = C(SU_q(2))$ and A equal to a finitely iterated equivariant join of H. The quantum principal $SU_q(2)$ -bundle thus given is *not* trivializable:

Theorem (main)

There does not exist a $C(SU_q(2))$ -equivariant *-homomorphism $f: C(SU_q(2)) \rightarrow A \circledast^{\delta} C(SU_q(2)).$

Proof outline: First, we prove that for any finite-dimensional representation V of a compact quantum group (H, Δ) , the associated finitely-generated projective module $(H \circledast^{\Delta} H) \Box_H V$ is represented by a Milnor idempotent $p_{U^{-1}}$, where U is a matrix of the representation V. Then we choose V to be the fundamental representation of $SU_q(2)$, and infer from index paring considerations that $(H \circledast^{\Delta} H) \Box_H V$ is not stably free. Finally, by the Pulling Back Theorem, we conclude that $(A \circledast^{\delta} H) \Box_H V$ is not stably free, whence f does not exist.

18/20



 Noncommutative Borsuk-Ulam-type conjectures; Paul F. Baum, Ludwik Dąbrowski, Piotr M. Hajac; Banach Center Publications 106 (2015), 9–18.



- Noncommutative Borsuk-Ulam-type conjectures; Paul F. Baum, Ludwik Dąbrowski, Piotr M. Hajac; Banach Center Publications 106 (2015), 9–18.
- Pulling back noncommutative associated vector bundles; Piotr M. Hajac, Tomasz Maszczyk; arXiv:1601.00021.

Quantum Dynamics, 2016–2019

Research and Innovation Staff Exchange network of: IMPAN (Poland), University of Warsaw (Poland), University of Łódź (Poland), University of Glasgow (G. Britain), University of Aberdeen (G. Britain), University of Copenhagen (Denmark), University of Münster (Germany), Free University of Brussels (Belgium), SISSA (Italy), Penn State University (USA), University of Colorado at Boulder (USA), University of Kansas at Lawrence (USA), University of California at Berkeley (USA), University of Denver (USA), Fields Institute (Canada), University of New Brunswick at Fredericton (Canada), University of Wollongong (Australia), Australian National University (Australia), University of Otago (New Zealand), University Michoacana de San Nicolás de Hidalgo (Mexico).

HORIZON 2020

The EU Framework Programme for Research and Innovation