Université libre de Bruxelles, 29 août 2017

RANK-TWO MILNOR IDEMPOTENTS FOR THE MULTIPULLBACK QUANTUM COMPLEX PROJECTIVE PLANE

Piotr M. Hajac (IMPAN)

Un travail conjoint avec Carla Farsi, Tomasz Maszczyk and Bartosz Zieliński.

Road map

Multipullback quantum complex projective

Multipullback quantum spheres S_H^{2N+1}

 $C(S_H^{2N+1})$ is the C*-subalgebra of $\prod_{i=0}^N \mathcal{T}^{\otimes i} \otimes C(S^1) \otimes \mathcal{T}^{\otimes N-i}$ defined by the compatibility conditions prescribed by the following diagrams $(0 \leq i < j \leq N, \otimes$ -supressed):

Here $\sigma_k := id^k \otimes \sigma \otimes id^{N-k}$ with domains and codomains determined by the context.

Multipullback quantum spheres S_H^{2N+1}

 $C(S_H^{2N+1})$ is the C*-subalgebra of $\prod_{i=0}^N \mathcal{T}^{\otimes i} \otimes C(S^1) \otimes \mathcal{T}^{\otimes N-i}$ defined by the compatibility conditions prescribed by the following diagrams $(0 \leq i < j \leq N, \otimes$ -supressed):

Here $\sigma_k := id^k \otimes \sigma \otimes id^{N-k}$ with domains and codomains determined by the context.

We equip all C*-algebras in the diagrams with the diagonal actions of U(1). Since all morphisms in the diagrams are U(1)-equivariant, we obtain the diagonal U(1)-action on $C(S_H^{2N+1})$.

Reducing to the quantum-group case

Reducing to the quantum-group case

Lemma

The above *-homomorphisms are U(1)-equivariant, and the induced *-homomorphisms on fixed-point subalgebras yield isomorphisms on K-groups.

Modules associated to piecewise cleft coactions

Let ${\mathcal H}$ be a Hopf algebra, let

be a one-surjective pullback diagram of \mathcal{H} -comodule algebras, and let $\gamma_i: \mathcal{H} \to \mathcal{P}_i$ be cleaving maps.

Modules associated to piecewise cleft coactions

Let \mathcal{H} be a Hopf algebra, let

be a one-surjective pullback diagram of \mathcal{H} -comodule algebras, and let $\gamma_i:\mathcal{H}\to\mathcal{P}_i$ be cleaving maps.

$\mathsf{Theorem}$

If V is a finite-dimensional left \mathcal{H} -comodule, then the associated left $\mathcal{P}_{12}^{\operatorname{co}\mathcal{H}}$ -module $\mathcal{P}\square V$ is the Milnor module for the automorphism of $\mathcal{P}_{12}^{\operatorname{co}\mathcal{H}}\otimes V$ given by

$$b \otimes v \longmapsto b(\tilde{\pi}_1 \circ \gamma_1)(v_{(-2)})(\tilde{\pi}_2 \circ \gamma_2)^{-1}(v_{(-1)}) \otimes v_{(0)}.$$

Modules associated to piecewise cleft coactions

Let \mathcal{H} be a Hopf algebra, let

be a one-surjective pullback diagram of \mathcal{H} -comodule algebras, and let $\gamma_i:\mathcal{H}\to\mathcal{P}_i$ be cleaving maps.

$\mathsf{Theorem}$

If V is a finite-dimensional left \mathcal{H} -comodule, then the associated left $\mathcal{P}_{12}^{\operatorname{co}\mathcal{H}}$ -module $\mathcal{P}\square V$ is the Milnor module for the automorphism of $\mathcal{P}_{12}^{\operatorname{co}\mathcal{H}}\otimes V$ given by

$$b \otimes v \longmapsto b(\tilde{\pi}_1 \circ \gamma_1)(v_{(-2)})(\tilde{\pi}_2 \circ \gamma_2)^{-1}(v_{(-1)}) \otimes v_{(0)}.$$

Applying this theorem to the $SU_q(2)$ -prolongation of P_5 is a key to the main result.

Main result

Definition

Let $k \in \mathbb{Z}$. We call the left $C(\mathbb{C}P^2_T)$ -module

$$L_k := \{ a \in C(S_H^5) \mid \forall \ \lambda \in U(1) : \alpha_{\lambda}(a) = \lambda^k a \}$$

the section module of the associated line bundle of winding number \boldsymbol{k} .

Theorem

The group $K_0(C(\mathbb{C}P^2_T))$ is freely generated by elements

$$[1], [L_1] - [1], [L_1 \oplus L_{-1}] - [2].$$

Furthermore, $L_1 \oplus L_{-1} \cong C(\mathbb{C}P^2_{\mathcal{T}}) \oplus C(\mathbb{C}P^2_{\mathcal{T}})e$. Here $e \in C(\mathbb{C}P^2_{\mathcal{T}})$ is an idempotent such that $C(\mathbb{C}P^2_{\mathcal{T}})e$ cannot be realized as a finitely generated projective module associated with the U(1)-C*-algebra $C(S^5_H)$ of Heegaard quantum 5-sphere.

Tentative plan of conferences

New Geometry of Quantum Dynamics planned conferences:

Tentative plan of conferences

New Geometry of Quantum Dynamics planned conferences:

 The Banach Center, Warsaw, 15 January – 19 January 2018 (approved and funded)

Tentative plan of conferences

New Geometry of Quantum Dynamics planned conferences:

- The Banach Center, Warsaw, 15 January 19 January 2018 (approved and funded)
- The Fields Institute, Toronto, 22 July 16 August 2019 (pending approval)