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Noncommutative Geometry the Next Generation

1 4–17 September, B ↪edlewo & Warsaw, school on
Noncommutative geometry and quantum groups

2 19 September – 14 October, 20-hour lecture course
An invitation to C*-algebras by Karen R. Strung

3 19 September – 14 October, 20-hour lecture course
An invitation to Hopf algebras by Réamonn Ó Buachalla

4 19 September – 14 October, 20-hour lecture course
Noncommutative topology for beginners by Tatiana Shulman

5 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

6 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

7 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski

8 21–25 Nov. Structure and classification of C*-algebras
G. Elliott, K. R. Strung, W. Winter, J. Zacharias
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8 21–25 Nov. Structure and classification of C*-algebras
G. Elliott, K. R. Strung, W. Winter, J. Zacharias

4/15



Noncommutative Geometry the Next Generation

1 4–17 September, B ↪edlewo & Warsaw, school on
Noncommutative geometry and quantum groups

2 19 September – 14 October, 20-hour lecture course
An invitation to C*-algebras by Karen R. Strung

3 19 September – 14 October, 20-hour lecture course
An invitation to Hopf algebras by Réamonn Ó Buachalla
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18–22 July 2016, the Fields Institute

GEOMETRY, REPRESENTATION THEORY
AND THE BAUM-CONNES CONJECTURE

A workshop in honour of Paul F. Baum on the occasion of his 80th
birthday organized by Alan Carey, George Elliott, Piotr M. Hajac,
and Ryszard Nest.

Sponsored by:

The Fields Institute, University of Toronto, Canada

National Science Foundation, USA

The Pennsylvania State University, USA
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What is a compact quantum group?

Definition (S. L. Woronowicz)

A compact quantum group is a unital C∗-algebra H with a given
unital ∗-homorphism ∆: H −→ H⊗minH such that the diagram

H
∆ //

∆
��

H ⊗
min
H

∆⊗id
��

H ⊗
min
H

id⊗∆
// H ⊗

min
H⊗

min
H

commutes and the two-sided cancellation property holds:

{(a⊗1)∆(b) | a, b ∈ H}cls = H ⊗
min

H = {∆(a)(1⊗b) | a, b ∈ H}cls.

Here “cls” stands for “closed linear span”.
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Free actions of compact quantum groups

Let A be a unital C∗-algebra and δ : A→ A⊗min H a unital
∗-homomorphism. We call δ a coaction of H on A (or an action of
the compact quantum group (H,∆) on A) iff

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),

2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A⊗min H (counitality)

3 ker δ = 0 (injectivity).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .
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Equivariant join construction

For any topological spaces X and Y , one defines the join space
X ∗ Y as the quotient of [0, 1]×X × Y by a certain equivalence
relation:

If X is a compact Hausdorff space with a continuous free action of
a compact Hausdorff group G, then the diagonal action of G on
the join X ∗G is again continuous and free. In particular, for the
antipodal action of Z/2Z on Sn−1, we obtain a Z/2Z-equivariant
identification Sn ∼= Sn−1 ∗ Z/2Z for the antipodal and diagonal
actions respectively.
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Gauged equivariant join construction

If Y = G, we can construct the join G-space X ∗ Y in a different
manner: at 0 we collapse X ×G to G as before, and at 1 we
collapse X ×G to (X ×G)/RD instead of X. Here RD is the
equivalence relation generated by

(x, h) ∼ (x′, h′), where xh = x′h′ .

More precisely, let R′J be the equivalence relation on I ×X ×G
generated by

(0, x, h) ∼ (0, x′, h) and (1, x, h) ∼ (1, x′, h′), where xh = x′h′.

The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right
G-action on (I ×X ×G)/R′J , and the formula

X ∗G 3 [(t, x, h)] 7−→ [(t, xh−1, h)] ∈ (I ×X ×G)/R′J

yields a G-equivariant homeomorphism.
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Join formulation and classical generalization

Thus the Borsuk-Ulam Theorem is equivalent to:

Theorem (join formulation)

Let n be a positive natural number. There does not exist a
Z/2Z-equivariant continuous map f̃ : Sn−1 ∗ Z/2Z→ Sn−1.

This naturally leads to:

A classical Borsuk-Ulam-type conjecture

Let X be a compact Hausdorff space equipped with a continuous
free action of a non-trivial compact Hausdorff group G. Then, for
the diagonal action of G on X ∗G, there does not exist a
G-equivariant continuous map f : X ∗G→ X.

Claimed to be proven by Alexandru Chirvasitu and Benjamin
Passer on 7 April 2016.

Corollary

Ageev’s conjecture about the Menger compacta.
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Equivariant noncommutative join construction

Definition (L. D ↪abrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H
∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Noncommutative Borsuk-Ulam-type conjectures
Conjecture 1

Let A be a unital nuclear C*-algebra with a free action of a
non-trivial compact quantum group (H,∆). Then there does not
exist an H-equivariant *-homomorphism A→ A~δ H.

Conjecture 2

Let A be a unital nuclear C*-algebra with a free action of a
non-trivial compact quantum group (H,∆). Then there does not
exist an H-equivariant *-homomorphism H → A~δ H.

The classical cases

If X is a compact Hausdorff principal G-bundle, A = C(X) and
H = C(G), then Conjecture 2 states that the principal G-bundle
X ∗G is not trivializable unless G is trivial. This is clearly true
because otherwise G ∗G would be trivializable, which is
tantamount to G being contractible, and the only contractible
compact Hausdorff group is trivial. Conjecture 1 was claimed to be
true only 34 days ago, and has some serious consequences.
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Iterated joins of the quantum SU(2) group
Consider the fibration defining the quaternionic projective space:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3, S4n+3/SU(2) = HPn.
To obtain a q-deformation of this fibration, we take H := C(SUq(2))
and A := C(S4n+3

q ) equal to the n-times iterated equivariant join of H.
The quantum principal SUq(2)-bundle thus given is not trivializable:

Theorem (main)

There does not exist a C(SUq(2))-equivariant *-homomorphism
f : C(SUq(2)) −→ C(S4n+3

q )~δ C(SUq(2)).

Proof outline: If f existed, there would be an equivariant map F
C(SUq(2))→ C(S4n+3

q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).
Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely-generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V . If
H := C(SUq(2)) and V is the fundamental representation
of SUq(2), then (H~∆H)�HV is not stably free by an index
paring calculation. This contradicts the existence of F . �

13/15



Iterated joins of the quantum SU(2) group
Consider the fibration defining the quaternionic projective space:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3, S4n+3/SU(2) = HPn.
To obtain a q-deformation of this fibration, we take H := C(SUq(2))
and A := C(S4n+3

q ) equal to the n-times iterated equivariant join of H.
The quantum principal SUq(2)-bundle thus given is not trivializable:

Theorem (main)

There does not exist a C(SUq(2))-equivariant *-homomorphism
f : C(SUq(2)) −→ C(S4n+3

q )~δ C(SUq(2)).

Proof outline: If f existed, there would be an equivariant map F
C(SUq(2))→ C(S4n+3

q )~δC(SUq(2))→ C(SUq(2))~∆C(SUq(2)).
Furthermore, for any finite-dimensional representation V of a
compact quantum group (H,∆), the associated finitely-generated
projective module (H~∆H)�HV is represented by a Milnor
idempotent pU−1 , where U is a matrix of the representation V . If
H := C(SUq(2)) and V is the fundamental representation
of SUq(2), then (H~∆H)�HV is not stably free by an index
paring calculation. This contradicts the existence of F . �

13/15



References

Noncommutative Borsuk-Ulam-type conjectures;
Paul F. Baum, Ludwik D ↪abrowski, Piotr M. Hajac;
Banach Center Publications 106 (2015), 9–18.

Pulling back noncommutative associated vector bundles and
constructing quantum quaternionic projective spaces;
Piotr M. Hajac, Tomasz Maszczyk;
arXiv:1601.00021.

14/15



References

Noncommutative Borsuk-Ulam-type conjectures;
Paul F. Baum, Ludwik D ↪abrowski, Piotr M. Hajac;
Banach Center Publications 106 (2015), 9–18.

Pulling back noncommutative associated vector bundles and
constructing quantum quaternionic projective spaces;
Piotr M. Hajac, Tomasz Maszczyk;
arXiv:1601.00021.

14/15



Quantum Dynamics, 2016–2019

Research and Innovation Staff Exchange network of:
IMPAN (Poland), University of Warsaw (Poland), University of
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