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Free actions of compact quantum groups

Let A be a unital C∗-algebra and δ : A→ A⊗min H an injective
unital ∗-homomorphism. We call δ a coaction of H on A (or an
action of the compact quantum group (H,∆) on A) if

1 (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),
2 {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A ⊗

min
H (counitality).

Definition (D. A. Ellwood)

A coaction δ is called free iff

{(x⊗ 1)δ(y) | x, y ∈ A}cls = A ⊗
min

H .

Given a compact quantum group (H,∆), we denote by O(H) its
dense Hopf ∗-subalgebra spanned by the matrix coefficients of
irreducible unitary corepresentations.

The Peter-Weyl subalgebra

of A is PH(A) := { a ∈ A | δ(a) ∈ A⊗alg O(H) }.
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The Peter-Weyl-Galois Theorem
Theorem (P. F. Baum, K. De Commer, P.M.H.)

Let A be a unital C*-algebra equipped with an action of a compact
quantum group (H,∆). The following conditions are equivalent:

1 The action is free.

2 The action satisfies the Peter-Weyl-Galois condition.

3 The action is strongly monoidal.

Put B = AcoH := {a ∈ A | δ(a) = a⊗ 1} (coaction-invariants).

The Peter-Weyl-Galois condition

is the bijectivity of the canonical map
PH(A)⊗B PH(A) 3 x⊗ y can7−→ (x⊗ 1)δ(y) ∈ PH(A)⊗alg O(H).

Let V and W be O(H)-comodules (representations of (H,∆)).

The strong monoidality

is the bijectivity of the natural map
(PH(A)�V )⊗B (PH(A)�W ) −→ PH(A)�(V ⊗algW ).
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Pulling Back Theorem

Theorem

Let (H,∆) be a compact quantum group, A and A′

(H,∆)-C*-algebras, B and B′ the corresponding fixed-point
subalgebras, and f : A→ A′ an equivariant *-homomorphism.
Then, if the action of (H,∆) on A is free and V is a representation
of (H,∆), the following left B′-modules are isomorphic

B′f ⊗
B

(
PH(A)�V

) ∼= PH(A′)�V .

Here B′f stands for the B′-B-bimodule with the right action given
by f , i.e. b · c = bf(c).

Corollary

The induced map (f |B)∗ : K0(B)→ K0(B′) satisfies

(f |B)∗
(
[PH(A)�V ]

)
= [PH(A′)�V ] .
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Strong connections
Let H be a Hopf algebra with bijective antipode S and P a right
H-comodule algebra for a coaction δ : P → P ⊗alg H. We view H
as an H-bicomodule via its comultiplication. We consider P ⊗alg P
as an H-bicomodule via

id⊗ δ right coaction,(
(S−1 ⊗ id) ◦ flip ◦ δ

)
⊗ id left coaction.

Definition

A strong connection is a unital bicolinear map ` : H → P ⊗alg P
such that multiplication ◦ ` = ε.

Theorem (T. Brzeziński, P.M.H.)

Let B be the coaction-invariant subalgebra. The existence of a
strong connection is equivalent to the bijectivity of the canonical
map P ⊗B P → P ⊗alg H and the existence of a left B-linear right
H-colinear splitting of the multiplication map B ⊗ P → P
(equivariant projectivity).
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The Chern-Galois proof

Note first that, since O(H) is cosemisimple, any comodule is a
direct sum of finite-dimensional comodules, so that it suffices to
prove the theorem for finite-dimesional representations of (H,∆).

Furthermore, by the PWG Theorem and the cosemisimplicity
of O(H), there exists a strong connection

` : O(H) −→ PH(A)⊗ PH(A)

on PH(A). Next, the equivariance of the *-homomorphism f
implies that `′ := (f ⊗ f) ◦ ` is a strong connection on PH(A′).
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The Chern-Galois proof

Now take advantage of Chern-Galois theory to show that applying
f componentwise to an idempotent matrix over B representing
PH(A)�V through ` is an idempotent matrix over B′ of the
following block form:

e :=

(
e′ 0
r 0

)
.

Here e′ is an idempotent matrix representing PH(A′)�V
through `′. It follows from e2 = e that and re′ = r.

Finally, the
computation(

1 0
−r 1

)(
e′ 0
r 0

)(
1 0
r 1

)
=

(
e′ 0
0 0

)
shows that modules represented respectively by e and e′ are
isomorphic, i.e. B′f ⊗

B

(
PH(A)�V

) ∼= PH(A′)�V . �
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The faithful-flatness proof

It follows from the first part of the preceding proof that the
canonical map

PH(A′) ⊗
B′
PH(A′) 3 x⊗ y can′7−→ (x⊗ 1)δ′(y) ∈ PH(A′)⊗O(H)

is bijective, and that PH(A′) is faithfully flat over B′.
Consequently,

f̃ := mPH(A′) ◦ (id⊗ f) : B′f ⊗
B
PH(A) −→ PH(A′)

is an isomorphism if and only if

id⊗
(
mPH(A′)◦(id⊗f)

)
: PH(A′)⊗

B′
B′f⊗

B
PH(A) −→ PH(A′)⊗

B′
PH(A′)

is an isomorphism. It is the case if and only if

mPH(A′)⊗f : PH(A′)f ⊗
PH(A)

PH(A)⊗
B
PH(A) −→ PH(A′)⊗

B′
PH(A′)

is an isomorphism.
9/17



The faithful-flatness proof
Thus, from the commutativity of the diagram

PH(A′)f ⊗
PH(A)

PH(A)⊗
B
PH(A)

(mPH (A′)⊗id)◦(id⊗can)

��

mPH (A′)⊗f// PH(A′) ⊗
B′
PH(A′)

can′

��
PH(A′) ⊗

alg
O(H)

id // PH(A′) ⊗
alg
O(H)

and the bijectivity of the canonical maps, we infer that f̃ is an
isomorphism. Since it is equivariant, we conclude that

f̃ ⊗ id :
(
B′f ⊗

B
PH(A)

)
�V −→ PH(A′)�V

is an isomorphism of left B′-modules. Finally, as O(H) is
cosemisimple, and any comodule over a cosemisimple Hopf algebra
is coflat, it follows that

B′f ⊗
B

(
PH(A)�V

)
∼= PH(A′)�V ,

as desired. � 10/17
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Noncommutative Geometry the Next Generation

1 4–17 September, B ↪edlewo & Warsaw, school on
Noncommutative geometry and quantum groups

2 19 September – 14 October, 20-hour lecture course
An invitation to C*-algebras by Karen R. Strung

3 19 September – 14 October, 20-hour lecture course
An invitation to Hopf algebras by Réamonn Ó Buachalla

4 19 September – 14 October, 20-hour lecture course
Noncommutative topology for beginners by Tatiana Shulman

5 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

6 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

7 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski

8 21–25 Nov. Structure and classification of C*-algebras
G. Elliott, K. R. Strung, W. Winter, J. Zacharias
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4 19 September – 14 October, 20-hour lecture course
Noncommutative topology for beginners by Tatiana Shulman

5 17–21 Oct. Cyclic homology
J. Cuntz, P. M. Hajac, T. Maszczyk, R. Nest

6 24–28 Oct. Noncommutative index theory
P. F. Baum, A. Carey, M. J. Pflaum, A. Sitarz

7 14–18 Nov. Topological quantum groups and Hopf algebras
K. De Commer, P. M. Hajac, R. Ó Buachalla, A. Skalski
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Equivariant noncommutative join construction

Definition (L. D ↪abrowski, T. Hadfield, P. M. H.)

For any compact quantum group (H,∆) acting freely on a unital
C*-algebra A, we define its equivariant join with H to be the
unital C*-algebra

A
δ
~H :=

{
f ∈ C([0, 1], A) ⊗

min
H
∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δ(A)

}
.

Theorem (P. F. Baum, K. De Commer, P. M. H.)

The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

defines a free action of the compact quantum group (H,∆) on the
equivariant join C*-algebra A~δH.
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Key Lemma

Lemma (Key Lemma)

Let (H,∆) be a compact quantum group, A and A′

(H,∆)-C*-algebras, and F : A→ A′ an equivariant
*-homomorphism. Assume that there exists a finite-dimensional
representation V of (H,∆) such that the finitely generated
projective module (A′~δ

′
H)�V is not free. Then there does not

exist an equivariant *-homomorphism H → A~δH (Borsuk-Ulam).

Proof: Since *-homomorphism F is equivariant,
the *-homomorphism

id⊗ F ⊗ id : C([0, 1]) ⊗
min

A ⊗
min

H −→ C([0, 1]) ⊗
min

A′ ⊗
min

H

restricts and corestricts an equivariant *-homomorphism
f : A~δH → A′~δ

′
H. Hence, by the Pulling Back Theorem,

the associated module (A~δH)�V is not free, and the lemma
follows. �
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′
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Iterated equivariant joins of compact quantum
groups

Let (H,∆) be a compact quantum group such that the C*-algebra
H admits a character χ. Then

ev 1
2
⊗ χ⊗ id : H~∆H −→ H

is an equivariant *-homomorphism. Now, by the preceding lemma,
if V is a finite-dimensional representation of (H,∆) such that the
module (H~∆H)�V is not free, then there does not exist an
equivariant *-homomorphism H → (H~∆H)~id⊗∆H. By
induction, one can extend this conclusion to an arbitrary finitely
iterated equivariant join of H with itself.

Furthermore, one can prove that for any finite-dimensional
representation V of a compact quantum group (H,∆), the
associated finitely-generated projective module (H~∆H)�HV is
represented by a Milnor idempotent pU−1 , where U is a matrix of
the representation V .
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Quantum quaternionic projective spaces

Consider the defining fibration of the quaternionic projective space:

SU(2) ∗ · · · ∗ SU(2) ∼= S4n+3, S4n+3/SU(2) = HPn.
To obtain a q-deformation of this fibration, we take H = C(SUq(2))
and A equal to a finitely iterated equivariant join of H. The
quantum principal SUq(2)-bundle thus given is not trivializable:

Theorem

There does not exist a C(SUq(2))-equivariant *-homomorphism
f : C(SUq(2))→ A~δ C(SUq(2)) (Borsuk-Ulam).

Proof outline: If V is the fundamental representation of SUq(2),
then index paring considerations applied to the associated Milnor
idempotent pU−1 show that

C(SUq(2))~∆C(SUq(2)))�C(SUq(2))V

is not stably free. Thus, as C(SUq(2)) admits characters, the
assumptions of the Key Lemma are satisfied, whence f does not
exist. �
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