Mathematical Institute Polish Academy of Sciences

COURSE DESCRIPTION

Course name	Geometric Foundations of Mechanics and Field Theory
Course type	reading course (wrd)
Supervisor	Janusz Grabowski
ECTS credit allocation	4 – IM PAN Ph. D. program; 6 - recommended for MA
	programs
Duration	One semester
Number of hours	30
Language	English or Polish, if every participant speaks Polish
Prerequisites	Basic knowledge in the field of Linear Algebra, Algebra,
	Calculus and Differential Geometry on graduate level.
Course content	Applications of differential geometry, graded geometry, and
	supergeometry to Analytical Mechanics and classical Field
	Theory. Foundations of Variational Calculus. Geometric
	description of the Lagrangian and Hamiltonian formalisms.
	Hamilton and Euler-Lagrange equations. Legendre
	transformation.
Recommended reading	[1] R. Abraham, J. Marsden, Foundations of Mechanics,
	AMS Chelsea Publishing, 2008.
	[2] V. I. Arnold, Mathematical Methods of Classical Mechanics,
	Springer, NY, 2005.
	[3] T. Aubin, A Course In Differential Geometry, AMS,
	Providence, 2000.
	[4] L. Auslander, Introduction to Differential Manifolds, New
	York : Mc-Graw-Hill Book Company, Inc., 1963.
	[5] I. M. Gelfand, S. V. Fomin, Calculus of Variations, Dover
	Publications, Mineola, N.Y, 2000.
	[6] C. J. Isham, Modern Differential Geometry for Physicists,
	World Scientific, London 1999.
	[7] P. Libermann, CM. Marle, Symplectic Geometry and
	Analytical Mechanics.
	[8] A. Spivak, Comprehensive Introduction to Differential
	Geometry, Publish or Perish, Houston, 1999.
	[9] S. Sternberg, Lectures on Differential Geometry,
	Englewood Cliffs, N. J., Prentice Hall, 1964.
Learning outcomes	The active participant should gain basic knowledge about the
	geometrical language used in calculus of variations, Analytical
	Mechanics and Classical Field Theories. He or she should be
	able to prepare a talk in some fields of mathematical physics
	based on the appropriate interature. He or she should also be
	able to formulate questions, derive equations, and solve
According to the de and criteria	Accessment is based on attendance and activity of the student
Assessment methods and criteria	Assessment is based on altendance and activity of the student
Domorka	anu witten exam.
Remarks	