Existence and positivity in CDO term structure models

Thorsten Schmidt

Technische Universität Chemnitz

 $www.tu-chemnitz.de/mathematik/fima thorsten.schmidt@mathematik.tu-chemnitz.de \label{eq:chemnitz}$

Thorsten Schmidt, TU Chemnitz 1

Motivation

In term structure models one often has two types of bonds p^1 and p^2 , both given by

$$p^i(t,T) = e^{-\int_t^T f^i(t,u)du}$$

If bond 1 is default-free and bond 2 is defaultable, one expects

$$f^1(t,u) \le f^2(t,u) \tag{1}$$

for all t, u.

Our aim is twofold, however in a much more general setting:

- When does absence of arbitrage imply (1)?
- What are sufficient conditions on f^1 , f^2 for (1) to hold?

Motivation

In term structure models one often has two types of bonds p^1 and p^2 , both given by

$$p^{i}(t,T) = e^{-\int_{t}^{T} f^{i}(t,u)du}$$

If bond 1 is default-free and bond 2 is defaultable, one expects

$$0 \le f^{1}(t, u) \le f^{2}(t, u)$$
 (1)

for all t, u.

Our aim is twofold, however in a much more general setting:

- When does absence of arbitrage imply (1)?
- What are sufficient conditions on f^1 , f^2 for (1) to hold?

Top-Down Models for portfolio credit risk

Essentials of securitization

- Consider a pool of *m* defaultable entities.
- Default *i* occurs at τ_i with associated loss q_i
- Cumulative loss

$$L_t=\sum_{i=1}^m q_i \mathbb{1}_{\{\tau_i\leq t\}}.$$

- Normalize the total nominal to 1, set $\mathcal{I} := [0, 1]$.
- Typical products can be described via the conditional distribution of L (after discounting): A security which pays 1_{L_T≤η} at T is called (T,η)-bond.
- Its price at time $t \leq T$ is denoted by $P(t, T, \eta)$.

We assume

$$P(t, T, \eta) = \mathbb{1}_{\{L_t \leq \eta\}} \exp\left(-\int_t^T f(t, u, \eta) du\right)$$

and that

$$df(t, T, \eta) = \alpha(t, T, \eta)dt + \sigma(t, T, \eta)dW_t + \int_E \gamma(t, T, \eta, x)(\mu(dt, dx) - F_t(dx)dt);$$
(2)

W is a possibly infinite-dimensional Brownian motion and μ is a integer-valued random measure on $\mathbb{R}^+ \times E$ with compensator $dt \otimes F_t(dx)$.

(A1) *L* is given by

$$L_{t} = \int_{0}^{t} \int_{E} \mathbb{1}_{\{L_{s-} + \ell_{s}(x) \leq 1\}} \ell_{s}(x) \mu(ds, dx),$$

where ℓ is a non-negative, predictable process such that for all $t \ge 0$ it holds that $\int_0^t \mathbf{1}_{\{L_{s-}+\ell_s(x)\le 1\}} \ell_s(x) F_s(dx) ds < \infty$ (finite activity).

Under (A1), *L* is a non-decreasing, pure-jump process with values in \mathcal{I} . Furthermore, the indicator process $(1_{\{L_t \leq \eta\}})_{t \geq 0}$ is cádlág and has intensity

$$\lambda(t,\eta) := F_t(\{x \in E : L_{t-} + \ell_t(x) > \eta\}); \tag{3}$$

that is,

$$M_t^{\eta} := \mathbf{1}_{\{L_t \le \eta\}} + \int_0^t \mathbf{1}_{\{L_s \le \eta\}} \lambda(s, \eta) \, ds \tag{4}$$

is a martingale. Moreover, $\lambda(t,\eta)$ is decreasing in η with $\lambda(t,1) = 0$.

This framework encompasses most of the existing portfolio credit risk models.

For example, if τ_1, \ldots, τ_m are conditionally independent with intensities λ_i and the losses at *t* have distribution $F_{i,t}$, then

$$\lambda(t,\eta) = \sum_{\tau_i > t} \lambda_{i,t} \int_E \mathbb{1}_{\{L_{t-} + \ell(x) > \eta\}} F_{i,t-}(dx).$$

There are affine specifications and risk-minimizing hedging strategies have been derived. We proceed as follows:

- Absence of arbitrage
- Existence in an SPDE specification
- Ositivity and monotonicity

Absence of arbitrage

We call the measure $\mathbb Q$ a martingale measure and write $\mathbb Q\in\mathcal Q,$ if

$$(e^{\int_0^T f(u,u,1)du}P(t,T,\eta))_{t\geq 0}$$
 are local martingales for all (T,η) . (5)

Let
$$\Sigma^j(t, \mathcal{T}, \eta) := \int_t^T \sigma^j(t, s, \eta) ds$$
 and $\Gamma(t, \mathcal{T}, \eta, x) := \int_t^T \gamma(t, s, \eta, x) ds$.

Theorem

Assume that (A1)–(A5) hold. Then $\mathbb{Q} \in \mathcal{Q}$, if and only if

$$\alpha(t, T, \eta) = \sum_{j} \sigma^{j}(t, T, \eta) \Sigma^{j}(t, T, \eta)$$

-
$$\int_{E} \gamma(t, T, \eta, x) \Big(e^{-\Gamma(t, T, \eta, x)} \mathbf{1}_{\{L_{t-} + \ell_{t}(x) \le \eta\}} - 1 \Big) F_{t}(dx) \quad (6)$$

$$r_{t}(0, \eta) = r_{t} + \lambda(t, \eta), \quad (7)$$

where (6) and (7) hold on $\{L_t \leq \eta\}$, $\mathbb{Q} \otimes dt$ -a.s.

Existence

For existence, we assume that $E = I \times G$, where I = [0, 1] as previously and G is the mark space of a (homogeneous) Poisson random measure $\tilde{\mu}$. Denote by μ^L the Poisson random measure associated to the jumps of L, such that

$$L_t = \int_0^t \int_I x \, \mu^L(ds, dx). \tag{8}$$

(A1') $L_t = \sum_{s \leq t} \Delta L_s$ is càdlàg, non-decreasing, adapted, pure jump process with values in I which admits an absolutely continuous compensator $\nu^L(t, dx)dt$ satisfying $\nu^L(t, \mathcal{I}) < \infty$. $\tilde{\mu}$ is a homogeneous Poisson random measure on $\mathbb{R}^+ \times G$ with compensator $dt \otimes \tilde{F}(dx)$ and $\int_0^t \int_G F(dx)ds < \infty$ for all $t \geq 0$. Moreover, $\tilde{\mu}$ and μ^L are independent. We set $\mu = \mu^L \otimes \tilde{\mu}$.

We switch to the Musiela parametrization, such that

$$r(t,\xi,\eta)=f(t,t+\xi,\eta).$$

Moreover, we consider models where r is the mild solution of

$$dr_{t} = \left(\frac{\partial}{\partial\xi}r_{t} + \alpha_{t}\right)dt + \sigma_{t}dW_{t} + \int_{G}\gamma_{t}(x)\tilde{\mu}(dt, dx) + \int_{I}\delta_{t}(x)\mu^{L}(dt, dx).$$
(9)

Corollary

Under (A1')-(A5') we have that $\mathbb{Q} \in \mathcal{Q}$, if and only if

$$\alpha(t, T, \eta) = \sum_{j} \sigma^{j}(t, T, \eta) \Sigma^{j}(t, T, \eta) - \int_{E} \gamma(t, T, \eta, x) e^{-\Gamma(t, T, \eta, x)} \tilde{F}(dx) - \int_{I} \mathbf{1}_{\{L_{t-}+x \leq \eta\}} \delta(t, T, \eta, x) e^{-\Delta(t, T, \eta, x)} \nu_{t}^{L}(dx),$$
(10)

$$r_t(0,\eta) = r_t + \lambda(t,\eta), \tag{11}$$

where (6) and (7) hold on $\{L_t \leq \eta\}$, $\mathbb{Q} \otimes dt$ -a.s.

Existence

A martingale problem

- (A6) $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{F} = \mathcal{G} \otimes \mathcal{H}$, $\mathbb{Q}(d\omega) = \mathbb{Q}_1(d\omega_1)\mathbb{Q}_2(\omega_1, d\omega_2)$, where $\omega = (\omega_1, \omega_2) \in \Omega$, and $\mathcal{F}_t = \mathcal{G}_t \otimes \mathcal{H}_t$, where
 - $(\Omega_1, \mathcal{G}, (\mathcal{G}_t), \mathbb{Q}_1)$ is some filtered probability space carrying the market information, in particular the Brownian motions $W^j(\omega) = W^j(\omega_1)$,
 - $j = 1, 2, \ldots$ and the Poisson random measure $\tilde{\mu}(\omega) = \tilde{\mu}(\omega_1)$,
 - ② (Ω₂, H) is the canonical space of paths for *I*-valued increasing marked point processes endowed with the minimal filtration (H_t): the generic ω₂ ∈ Ω₂ is a càdlàg, increasing, piecewise constant function from ℝ₊ to *I*. Let

$$L_t(\omega) = \omega_2(t)$$

be the coordinate process. The filtration (\mathcal{H}_t) is therefore $\mathcal{H}_t = \sigma(L_s \mid s \leq t)$, and $\mathcal{H} = \mathcal{H}_{\infty}$,

(3) \mathbb{Q}_2 is a probability kernel from (Ω_1, \mathcal{G}) to \mathcal{H} to be determined below.

- Under (A6), σ_t(ω) = σ_t(ω₁, ω₂) (and γ, δ) are functions of the loss path ω₂.
- The evolution equation (9) can thus be solved on the stochastic basis $(\Omega_1, \mathcal{G}, (\mathcal{G}_t), \mathbb{Q}_1)$ along any genuine loss path $\omega_2 \in \Omega_2$.

Regarding condition (11), note that

$$\nu^{L}(t,(0,\eta]) = \lambda(t,L_{t}) - \lambda(t,L_{t}+\eta), \quad \eta \in I,$$
(12)

where $\lambda(t, x) = 0$ for $x \ge 1$. Then (11) is equivalent to

$$\nu^{L}(\omega; t, dx) = -r_{t}(\omega; 0, \omega_{2}(t) + dx), \qquad (13)$$

(with $r_t(0,\eta) \equiv r_t$ for $\eta \ge 1$) Hence, unless δ is zero,

$$\alpha_t(\xi,\eta) = \alpha_t(\xi,\eta,r_t)$$

becomes an explicit linear functional of the (short end of the) prevailing spread curve.

Assume (A6) holds. Let r_0 , σ_t , $\gamma_t(x)$ and $\delta_t(x)$ satisfy (A2), (A4) and (A5'), respectively. Define $\nu^L(t, dx)$ by (13) and α_t by (10) for all (t, T, x). Suppose, for any loss path $\omega_2 \in \Omega_2$, there exists a solution $r_t(\xi, \eta)$ of (9) such that $r_t(0, \eta)$ is progressive, decreasing and càdlàg in $\eta \in I$. Then

- (A3) is satisfied.
- Or There exists a unique probability kernel Q₂ from (Ω₁, G) to H, such that the loss process L_t(ω) = ω₂(t) satisfies (A1') and the no-arbitrage condition (5) holds.

A SPDE formulation

We consider the SPDE

$$dr_t = \left(\frac{d}{d\xi}r_t + \alpha(r_t)\right)dt + \sigma(r_t)dW_t + \int_G \gamma(r_{t-}, x)\tilde{\mu}(dt, dx) + \int_I \delta(r_{t-}, x)\mu^L(dt, dx).$$
(14)

with vector fields $\sigma: H \to H$, $\gamma: H \times G \to H$ and $\delta: H \times I \to H$ and

$$\begin{aligned} \alpha(\omega_2, t, h)(\xi, \eta) &= \sum_j \sigma^j(h)(\xi, \eta) \Sigma^j(\xi, \eta) \\ &- \int_E \gamma(h, x)(\xi, \eta) e^{-\Gamma(h, x)(\xi, \eta)} \tilde{F}(dx) \\ &- \int_I \mathbf{1}_{\{\omega_2(t-)+x \leq \eta\}} \delta(h, x)(\xi, \eta) e^{-\Delta(h, x)(\xi, \eta)} h(0, \omega_2(t) + dx). \end{aligned}$$

Suppose that (A6) holds and that

$$\begin{split} \|\sigma(h_1) - \sigma(h_2)\|_{L^0_2(\mathcal{H})} &\leq K \|h_1 - h_2\|, \\ \left(\int_E \|\gamma(h_1, x) - \gamma(h_2, x)\|^2 \tilde{F}(dx)\right)^{1/2} &\leq K \|h_1 - h_2\|, \\ \int_0^t \int_I \|\delta(h_1, x) - \delta(h_2, x)\| \mu^{\omega_2}(ds, dx) &\leq K(\omega_2, t) \|h_1 - h_2\|, \\ \|\alpha(\omega_2, t, h_1) - \alpha(\omega_2, t, h_2)\| &\leq K(\omega_2, t) \|h_1 - h_2\|. \end{split}$$

Then, for each $\omega_2 \in \Omega_2$ there is a unique solution $r(\cdot, \omega_2) : \Omega_1 \times \mathbb{R}_+ \to H$ for

$$dr_t(\cdot,\omega_2) = \left(\frac{d}{d\xi}r_t(\cdot,\omega_2) + \alpha(r_t(\cdot,\omega_2))\right)dt + \sigma(r_t(\cdot,\omega_2))dW_t \\ + \int_G \gamma(r_{t-}(\cdot,\omega_2),x)\tilde{\mu}(dt,dx) + \int_I \delta(r_{t-}(\cdot,\omega_2),x)\mu^{\omega_2}(dt,dx)$$

on the probability space $(\Omega_1, \mathcal{G}, \mathbb{Q}_1)$.

Positivity and Monotonicity

Consider the closed, convex cone

$$C = \bigcap_{\substack{\xi \in \mathbb{R}_+ \\ \eta_1 \leq \eta_2}} \bigcap_{\substack{\eta_1, \eta_2 \in \mathcal{I} \\ \eta_1 \leq \eta_2}} \{h \in H : h(\xi, \eta_1) \geq h(\xi, \eta_2)\} \cap \bigcap_{\xi \in \mathbb{R}_+} \{h \in H : h(\xi, 1) \geq 0\}.$$

Definition

The CDO model (14) is called *positive and monotone* if for all $h_0 \in C$ we have

$$\mathbb{P}(r_t \in C) = 1, \quad t \geq 0$$

where $(r_t)_{t\geq 0}$ denotes the mild solution for (14) with $r_0 = h_0$.

Assume that

$$h + \gamma(h, x) + \delta(h, y) \in C$$

for all $h \in C$, all $t \ge 0$ and $F \otimes \nu^{L}(t, \cdot)$ -almost all $(x, y) \in G \times I$. Moreover,

 $egin{aligned} &\sigma^j(h)(\xi,1)=0,\ &lpha(h)(\xi,1)\geq 0 \end{aligned}$

for all $\xi \in (0,\infty)$ and all $h \in H$ with $h(\xi) = 0$, as well as

$$\sigma^{j}(h)(\xi,\eta_{1}) = \sigma^{j}(h)(\xi,\eta_{2})$$

 $lpha(h)(\xi,\eta_{1}) \ge lpha(h)(\xi,\eta_{2})$

for all $\xi \in (0, \infty)$, all $\eta_1 \leq \eta_2$ and all $h \in H$ with $h(\xi, \eta_1) = h(\xi, \eta_2)$. Then the CDO model is positive and monotone.

Assume that

$$h + \gamma(h, x) + \delta(h, y) \in C$$

for all $h \in C$, all $t \ge 0$ and $F \otimes \nu^{L}(t, \cdot)$ -almost all $(x, y) \in G \times I$. Moreover,

 $egin{aligned} &\sigma^j(h)(\xi,1)=0,\ &lpha(h)(\xi,1)\geq 0 \end{aligned}$

for all $\xi \in (0,\infty)$ and all $h \in H$ with $h(\xi) = 0$, as well as

$$\sigma^{j}(h)(\xi,\eta_{1})=\sigma^{j}(h)(\xi,\eta_{2})\ lpha(h)(\xi,\eta_{1})\geqlpha(h)(\xi,\eta_{2})$$

for all $\xi \in (0, \infty)$, all $\eta_1 \leq \eta_2$ and all $h \in H$ with $h(\xi, \eta_1) = h(\xi, \eta_2)$. Then the CDO model is positive and monotone.

Thank you for your attention!

- D Filipović, L Overbeck, T Schmidt: Dynamic CDO term structure modelling (2009). Forthcoming in Mathematical Finance.
- [2] D Filipovic, S Tappe, J Teichmann: Term Structure Models Driven by Wiener Process and Poisson Measures: Existence and Positivity (2009)
- [3] T Schmidt, J Zabczyk: CDO term structure modelling with Lévy processes and the relation to market models (2010). arXiv:1007.1706
- [4] T Schmidt, S Tappe: General CDO term structure modelling: existence and monotonicity (2010), working paper.