

LMU Munich, Germany • Lars Diening

On the p-Laplacian and p-fluids

Part I

p-Laplace and basic properties

The Dirichlet problem for the Laplacian

Strong formulation

$$-\Delta u = f \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega,$$

where f is given data.

Classical solution: Find $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$.

Variational approach: Classical solution minimizes

$$\mathcal{J}(w) := \int_{\Omega} \frac{1}{2} |\nabla w|^2 dx - \int fw dx = \int_{\Omega} \frac{1}{2} |\nabla w|^2 dx - \langle f, w \rangle.$$

on
$$X := \{ w \in C^1(\overline{\Omega}) : w|_{\partial\Omega} = 0 \}.$$

Variational approach

First variation:

$$(\delta J)(w)(\xi) := ext{directional derivative}$$
 $= \left. rac{d}{dt} J(w+t\xi)
ight|_{t=0}.$

For $\mathcal{J}(w) = \int_{\Omega} \frac{1}{2} |\nabla w|^2 dx - \langle f, w \rangle$, we have

$$(\delta J)(w)(\xi) = \frac{d}{dt} \left(\frac{1}{2} \langle \nabla(w + t\xi), \nabla(w + t\xi) \rangle - \langle f, w + t\xi \rangle \right) \Big|_{t=0}$$
$$= \langle \nabla w, \nabla \xi \rangle - \langle f, \xi \rangle$$
$$= \langle -\Delta w - f, \xi \rangle$$

Minimizer $u \Leftrightarrow (\delta \mathcal{J})(u)(\xi) = 0$ for all $\xi \Leftrightarrow -\Delta u = f$.

p-Laplacian

Let 1 .

Variational definition: Minimize $\mathcal{J}(w) := \int_{\Omega} \frac{1}{p} |\nabla w|^p \, dx - \langle f, w \rangle$ on Sobolev space $W_0^{1,p}(\Omega)$ $(W^{1,p}\text{-closure of } C_0^\infty(\Omega)).$

Euler-Langrange equation: $u \in W_0^{1,p}(\Omega)$ minimizer, then

$$0 \stackrel{!}{=} (\delta \mathcal{J})(u)(\xi) = \frac{d}{dt} \left(\int_{\Omega} \frac{1}{p} |\nabla(w + t\xi)|^{p} dx - \langle f, w + t\xi \rangle \right) \Big|_{t=0}$$
$$= \left\langle |\nabla w|^{p-2} \nabla w, \nabla \xi \right\rangle - \langle f, w \rangle.$$

Thus
$$-\underbrace{\operatorname{div}(|\nabla w|^{p-2}\nabla w)}_{=:\Delta_p w} - f = 0$$
 in $(W_0^{1,p}(\Omega))^*$

The maximum principle (1/2)

Let h be harmonic, i.e. $-\Delta h = 0$.

$$\Rightarrow$$
 for every ball B : $u(x) = \int_{B(x)} u(y) dy$

Theorem (Strict maximum principle)

h cannot have strict maximum in interior!

Theorem (Maximum principle)

$$\min h(\partial\Omega) \leq \min h(\Omega) \leq \max h(\Omega) \leq \max h(\partial\Omega)$$

In other words:
$$h(\Omega) \subset h(\partial\Omega)$$
.

The maximum principle (2/2)

Theorem

Let $u \in W_0^{1,2}(\Omega)$ with $-\Delta u \leq 0$. Then $u \leq 0$ on Ω .

Proof:

Define
$$u^+ := \max\{u, 0\} = \chi_{\{u \ge 0\}} u \in W_0^{1,2}(\Omega)$$

Then
$$\nabla u^+ = \chi_{\{u > 0\}} \nabla u$$
.

$$\|\nabla u^+\|_2^2 = \langle \nabla u, \nabla u^+ \rangle = \langle u^+, f \rangle \le 0.$$

Thus $u^+ = 0$, i.e. $u \le 0$.

Convex hull property (1/4)

Vectorial: $u:\Omega\to\mathbb{R}^N$

Theorem (Convex hull property)

Let
$$-\Delta h = 0$$
. Then $h(\Omega) \subset \overline{\operatorname{conv} \operatorname{hull}} h(\partial \Omega)$.

This generalizes the maximum principle!

Proof: Use linear functionals and the scalar maximum principle.

Theorem (Convex hull property – non-linear)

Let
$$-\Delta_p h = -\mathrm{div}(|\nabla h|^{p-2}\nabla h) = 0$$
. Then $h(\Omega) \subset \overline{\mathrm{conv hull}} \, h(\partial\Omega)$.

Proof: By projection, see below!

Convex hull property (2/4)

The set $K := \overline{\operatorname{conv} \operatorname{hull}} h(\partial \Omega)$ is convex.

Use nearest point projection

$$\Pi_K x := \arg\min_{y \in K} |x - y|.$$

Then
$$|\Pi_K x - \Pi_K Y| \le |x - y|$$
.

Define
$$(\Pi_K h)(x) := \Pi_K (h(x))$$
 (point-wise projection)

Then $|\nabla \Pi_K h| \le |\nabla h|$ (since difference quotients are reduced!)

Convex hull property (3/4)

Recall $|\nabla \Pi_K h| \leq |\nabla h|$.

Since $u(\partial\Omega) \subset K = \overline{\operatorname{conv}\operatorname{hull}} \, h(\partial\Omega)$, we have $h = \Pi_K h$ on $\partial\Omega$.

$$\Rightarrow \qquad \mathcal{J}(\Pi h) = \int_{\Omega} \frac{1}{p} |\nabla \Pi_{K} h|^{p} dx \leq \int_{\Omega} \frac{1}{p} |\nabla h|^{p} dx \leq \mathcal{J}(h).$$

Uniqueness (with same boundary values) implies $h = \Pi_K h$.

⇒ No projection needed!

Thus $h(\Omega) \subset K = \overline{\operatorname{conv} \operatorname{hull}} h(\partial \Omega)$.

⇒ Convex hull property!.

Convex hull property (4/4)

Theorem (Scalar case!)

Let $u \in W_0^{1,p}(\Omega)$ with $-\Delta_p u \leq 0$. Then $u \leq 0$ on Ω .

Proof:

Let $K := (-\infty, 0]$.

$$\mathcal{J}(w) = \int_{\Omega} \frac{1}{p} |\nabla w|^p dx - \int_{\Omega} f w dx$$
 with $f \leq 0$.

Then $\mathcal{J}(\Pi_K u) \leq \mathcal{J}(u)$ and $\Pi_K u = u$ on $\partial \Omega$.

Uniqueness implies $\Pi_K u = u$ on Ω .

Thus,
$$u(\Omega) \subset K = (-\infty, 0]$$
.

Part II

p-harmonic functions

p-harmonic functions

We say that h is p-harmonic if $-\Delta_p h = -\operatorname{div}(|\nabla h|^{p-2}\nabla h) = 0$.

p-harmonic functions are local minimizers of

$$\mathcal{J}(w) = \int_{\Omega} \frac{1}{p} |\nabla h|^p dx,$$

i.e. $\mathcal{J}(u) \leq \mathcal{J}(u+t\,\xi)$ for all $\xi \in C^1_0(\Omega)$.

Define $A(Q) := |Q|^{p-2}Q$. Then

$$-\mathrm{div}(A(\nabla u))=0.$$

Monotonicity (1/3)

Consider
$$\langle A(\nabla u) - A(\nabla w), \nabla u - \nabla w \rangle$$

For example used for uniqueness.

Pointwise estimate (with
$$[Q,P]_t := (1-t)Q + tP$$
)

$$(A(P) - A(Q)) \cdot (P - Q) = \sum_{j} (A_{j}(P) - A_{j}(Q))(P_{j} - Q_{j})$$

$$= \int_{0}^{1} \frac{d}{dt} A_{j}([Q, P]_{t}) dt (P - Q)_{j}$$

$$= \int_{0}^{1} \underbrace{(\partial_{k} A_{j})([Q, P]_{t})}_{=|M|^{p-2}(\delta_{j,k} + (p-2)\frac{M_{j}M_{k}}{|M|^{2}})} dt (P - Q)_{k}(P - Q)_{j}$$

Monotonicity (2/3)

Note that

$$|M|^{p-2} \left(\delta_{j,k} + (p-2) \frac{M_j M_k}{|M|^2}\right) \ge |M|^{p-2} \min\{p-1,1\} \delta_{j,k}$$

Thus,

$$(A(P) - A(Q)) \cdot (P - Q) \ge c \int_0^1 |[Q, P]_t|^{p-2} dt |P - Q|^2$$

$$\ge c (|Q| + |P|)^{p-2} |P - Q|^2.$$

Similarly,

$$(A(P) - A(Q)) \cdot (P - Q) \sim (|Q| + |P|)^{p-2} |P - Q|^2,$$

 $|A(P) - A(Q)| \sim (|Q| + |P|)^{p-2} |P - Q|.$

Monotonicity (3/3)

Recall
$$A(Q) = |Q|^{p-2}Q$$
.

Define
$$V(Q) = |Q|^{\frac{p-2}{2}}Q$$
.

Then
$$|V(Q)|^2 = A(Q) \cdot Q$$
 and $\frac{V(Q)}{|Q|} = \frac{A(Q)}{|Q|} = \frac{Q}{|Q|}$.

Then
$$|V(P) - V(Q)| \sim (|Q| + |P|)^{\frac{p-2}{2}} |P - Q|$$
.

Theorem

$$(A(P) - A(Q)) \cdot (P - Q) \sim (|Q| + |P|)^{p-2} |P - Q|^2 \sim |V(P) - V(Q)|^2,$$
$$|A(P) - A(Q)| \sim (|Q| + |P|)^{p-2} |P - Q|.$$

Caccioppoli

Start with
$$\langle A(\nabla u), \nabla \xi \rangle = 0$$
 for $\xi \in W_0^{1,p}(\Omega)$.

Let
$$\xi \in C_0^{\infty}(2B)$$
 with $\chi_B \leq \xi \leq \chi_{2B}$ and $\|\nabla \eta\|_{\infty} \leq c r^{-1}$.

Choose
$$\xi = (u - \langle u \rangle_{2B}) \eta^{p'}$$
. Then

$$\langle A(\nabla u), \eta \nabla u \rangle = \langle A(\nabla u), (u - \langle u \rangle_{2B}) \nabla (\eta^{p'}) \rangle.$$

$$\Rightarrow \int \eta^{p'} |\nabla u|^p dx \le c \int \eta^{p'-1} |\nabla u|^{p-1} \frac{|u - \langle u \rangle_{2B}|}{r} dx$$

Young's inequality implies:

Lemma (Caccioppoli estimate)

$$\oint_{B} |\nabla u|^{p} dx \le c \oint_{2B} \left| \frac{u - \langle u \rangle_{2B}}{r} \right|^{p} dx$$

Reverse Hölder's estimate

Lemma (Caccioppoli estimate)

$$\int_{B} |\nabla u|^{p} dx \le c \int_{2B} \left| \frac{|u - \langle u \rangle_{2B}|}{r} \right|^{p} dx$$

Then Poincaré implies

Lemma (Reverse Hölder)

For some $\theta \in (0,1)$

$$\oint_{B} |\nabla u|^{p} dx \le c \left(\oint_{2B} |\nabla u|^{\theta p} dx \right)^{\frac{1}{\theta}}$$

Gehring

Lemma (Gehring)

Assume that for all balls B and some $\theta \in (0,1)$

$$\oint_{B} |f| \, dx \le c \left(\oint_{2B} |f|^{\theta} \, dx \right)^{\frac{1}{\theta}} + \oint_{B} |g| \, dx$$

Then there exists s > 1 such that

$$\left(\int_{B} |f|^{s} dx\right)^{\frac{1}{s}} \leq c \int_{2B} |f| dx + c \left(\int_{B} |g|^{s} dx\right)^{\frac{1}{s}}$$

$$\Rightarrow \qquad \left(\int_{P} |\nabla u|^{sp} \, dx \right)^{\frac{1}{s}} \le c \int_{P} |\nabla u|^{p} \, dx$$

Higher order (1/2)

Difference quotient technique:
$$\tau_h f(x) := \frac{f(x+h) - f(x)}{|h|}$$
.

Test function $\xi = \tau_{-h}(\eta^{p'}\tau_h(u-a))$ with a linear.

For
$$p = 2$$
:

$$\langle \nabla u, \nabla \xi \rangle = \langle \tau_h \nabla u, \nabla (\eta^2 \tau_h u) \rangle$$

= $\int \eta^2 |\tau_h \nabla u|^2 dx + \int \tau_h \nabla u \tau_h (u - a) \nabla (\eta^2) dx$

With
$$h \to 0$$
 we get $\int \eta^2 |\nabla^2 u|^2 dx \le c \int \eta |\nabla^2 u| \frac{|\nabla (u-a)|}{r} dx$.

We get
$$\int_{R} \left| \nabla^{2} u \right|^{2} dx \leq c \int_{R} \left| \frac{\nabla (u - a)}{r} \right|^{2} dx.$$

Higher order (2/2)

Difference quotient technique:
$$\tau_h f(x) := \frac{f(x+h) - f(x)}{|h|}$$
.

Test function $\xi = \tau_{-h}(\eta^{p'}\tau_h(u-a))$ with a linear.

$$p \neq 2$$
: Main part gives $\langle \tau_h A(\nabla u), \eta^{p'} \tau_h \nabla u \rangle \sim \int |\tau_h V(\nabla u)|^2 dx$.

Now,
$$h o 0$$
 gives $\int \eta^{p'} |\nabla V(\nabla u)|^2 dx \leq ext{lower order term.}$

Attention: This is not $u \in W^{2,p}$.

Shifted N-functions

$$A(Q)=|Q|^{p-2}Q, \qquad V(Q)=|Q|^{rac{p-2}{2}}Q, \qquad arphi(t)=rac{1}{p}t^{p}.$$

Shifted φ -functions: $\varphi_a(t) \approx (a+t)^{p-2}t^2$ [Diening, Ettwein '05]

$$(A(P) - A(Q)) \cdot (P - Q) \sim |F(P) - F(Q)|^2 \sim \varphi_{|P|}(|P - Q|)$$
$$|A(P) - A(Q)| \qquad \qquad \sim \varphi'_{|P|}(|P - Q|)$$

 Δ_2 -condition: $\varphi_a(2t) \leq c \varphi_a(t)$.

Young's inequality: $\psi'(s) t \leq \delta \psi(s) + c_{\delta} \psi(t)$

Conjugate function: $\varphi^*(s) = \sup_{t>0} (st - \varphi(t)).$

Then $\varphi^*(t) = \frac{1}{p'}t^{p'}$ and $\varphi^{**} = \varphi$.

Higher order reverse Hölder (1/2)

For $\xi \in W^{1,p}_0(\Omega)$ and arbitrary constant Q

$$0 = \langle A(\nabla u), \nabla \xi \rangle = \langle A(\nabla u) - A(Q), \nabla \xi \rangle.$$

Let $\xi = \eta^{p'}(u-q)$ with q linear and $\nabla q = Q$. Then

$$\int \eta^{p'}(A(\nabla u) - A(Q)) \cdot (\nabla u - Q) \, dx \le c \int \eta^{p'-1} \varphi'_{|Q|}(|\nabla u - Q|) \left| \frac{u - q}{r} \right| dx.$$

With $(A(P) - A(Q)) \cdot (P - Q) \sim \varphi_{|Q|}(|P - Q|)$ and Young's inequality

$$\int_{-}^{\infty} \varphi_{|Q|}(|\nabla u - Q|) dx \le c \int_{-}^{\infty} \varphi_{|Q|}\left(\left|\frac{u - q}{r}\right|\right) dx.$$

Higher order reverse Hölder (2/2)

$$\int_{B} \varphi_{|Q|}(|\nabla u - Q|) dx \le c \int_{2B} \varphi_{|Q|}\left(\left|\frac{u - q}{r}\right|\right) dx.$$

Poincaré's inequality implies (for $\langle u - q \rangle_{2B} = 0$)

$$\oint_{B} \varphi_{|Q|}(|\nabla u - Q|) dx \le \left(\oint_{2B} \varphi_{|Q|}^{\theta}(|\nabla u - Q|) dx \right)^{\frac{1}{\theta}}$$

Thus, for all balls B

$$\int_{B} |V(\nabla u) - \langle V(\nabla u) \rangle_{B}|^{2} dx \le c \left(\int_{B} |V(\nabla u) - \langle V(\nabla u) \rangle_{B}|^{2\theta} dx \right)^{\frac{1}{\theta}}$$

Subsolution property (1/2)

Formally
$$\xi = \partial_j (\eta \partial_j u)$$

$$0 = \langle \partial_k A_k(\nabla u), \partial_j (\eta \partial_j u) \rangle$$

$$= \langle \partial_j A_k(\nabla u), \partial_k (\eta \partial_j u) \rangle$$

$$= \langle \partial_j A_k(\nabla u), \eta \partial_k \partial_j u \rangle + \langle \partial_j A_k(\nabla u), (\partial_k \eta) \partial_j u \rangle =: (I) + (II).$$

Then
$$(I) \sim \int |\nabla u|^{p-2} |\nabla^2 u|^2 \eta \, dx \sim \int |\nabla V(\nabla u)|^2 \eta \, dx \geq 0.$$

Moreover,

$$II = \int \underbrace{\left(\delta_{j,k} + (p-2)\frac{\partial_{j}u\partial_{k}u}{\left|\nabla u\right|^{2}}\right)}_{=:a(x)} \partial_{k} \left(\frac{1}{p}\left|\nabla u\right|^{p}\right) \partial_{k} \eta \, dx.$$

Subsolution property (2/2)

Recall:
$$a(x) = \delta_{j,k} + (p-2) \frac{\partial_j u \partial_k u}{|\nabla u|^2}$$
 (tensor)

Then $\lambda \operatorname{Id} \leq a(x) \leq \Lambda \operatorname{Id}$ and

$$-\mathrm{div}\left(a(x)\nabla\left(\frac{1}{p}|\nabla u|^p\right)\right)\leq 0.$$

$$L^{\infty}$$
- estimates: $\sup_{B} |\nabla u|^p \le c \int_{2B} |\nabla u|^p dx$

Harnack inequality:

$$\oint_{\partial B} |\nabla u|^p \, dx \le c \inf_{B} |\nabla u|^p \le c \left(\sup_{\partial B} |\nabla u|^p - \sup_{B} |\nabla u|^p \right)$$

Decay estimate

After a few more steps . . .

Theorem (decay estimate)

There exists $\alpha > 0$ such that

$$\int_{B_r} |V(\nabla u) - \langle V(\nabla u) \rangle_{B_r}|^2 dx \le c \left(\frac{r}{R}\right)^{\alpha} \int_{B_R} |V(\nabla u) - \langle V(\nabla u) \rangle_{B_R}|^2 dx$$

By characterization of
$$C^{0,\alpha} \Rightarrow V \in C^{0,\alpha}$$

Since V^{-1} is Hölder continuous: $\nabla u \in C^{0,\beta}$.

This includes any $n, N \ge 1$.

In the plane (1/3)

Consider $-\Delta_p h = 0$ on \mathbb{R}^2 (scalar valued, i.e. N = 1).

[Bojarski, Iwaniec '83]: singular points $\nabla u(x) = 0$ are isolated.

Detailed study by: Iwaniec-Manfredi, Dobrowolski, Aronsson, Lindqvist

Aronsson: Hodograph transform

We will use a shorter but formal approach here!

In the plane (2/3)

Define

$$q := \nabla_{x} u$$
$$v(q) := q \cdot x - u(x).$$

Then

$$x = \nabla_q v$$
$$\nabla_q^2 v = (\nabla_x^2 u)^{-1}.$$

Thus $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=0$ becomes

$$0 = |\nabla u|^{p-2} \Big(\Delta u + (p-2) \frac{\partial_k u \partial_j}{|\nabla u|^2} \partial_j \partial_k u \Big).$$

Hence,
$$0 = \nabla_x^2 u : \left(\mathrm{Id} + (p-2) \hat{q} \otimes \hat{q} \right) = (\nabla_q^2 v)^{-1} : \left(\mathrm{Id} + (p-2) \hat{q} \otimes \hat{q} \right)$$

We get for
$$n=2$$
: $0=\nabla_q^2 v: (\mathrm{Id}+(p'-2)\hat{q}\otimes\hat{q})$

In the plane (3/3)

Recall: $0 = \nabla_q^2 v : (\mathrm{Id} + (p'-2)\hat{q} \otimes \hat{q})$

Ansatz: $v(q) = |q|^{\alpha} q_1 q_2$ works with $0 = \alpha^2 + (p+2)\alpha + (4-2p)$.

We get
$$u \in C^{0,\gamma}$$
 with $\gamma = \frac{7p-6+\sqrt{p^2+12p-12}}{6p-6}$

$$D := \nabla u$$

$$A := A(\nabla u)$$

$$V := V(\nabla u)$$

Part III

p-Stokes

Motion of fluid

Incompressible fluids with constant density

$$\partial_t v - \operatorname{div}(S) + [\nabla v]v + \nabla q = f$$

$$\operatorname{div} v = 0$$

plus boundary conditions

with

$$v = ext{velocity}$$
 $q = ext{pressure}$

• •

Convective term $[\nabla v]v$ by change of coordinates!

Frame indifference (objectivity) gives:

$$A = A(\varepsilon(v))$$

with $\varepsilon(v) = \frac{1}{2}(\nabla v + (\nabla v)^T)$

Non-Newtonian fluids (or generalized Newtonian)

Properties of fluids are described by $A(\varepsilon(v))$.

Newtonian fluid: water, air

$$A(\varepsilon(v)) = 2\nu\varepsilon(v)$$

Then $\operatorname{div}(A(\varepsilon(v)) = \nu \Delta v + \nu \nabla \operatorname{div} v = \nu \Delta v$.

Power law fluid (generalized Newtonian): honey, ketchup, blood

$$A(\varepsilon(v)) = \begin{cases} (\gamma + |\varepsilon(v)|)^{p-2} \varepsilon(v), \\ (\gamma^2 + |\varepsilon(v)|^2)^{\frac{p-2}{2}} \varepsilon(v), \end{cases}$$

with $1 and <math>\gamma > 0$.

p-Stokes (1/2)

Consider time independent flow; no convection

$$- ext{div}ig(A(arepsilon(v))ig) +
abla q = f$$
 $ext{div} v = 0$ on $\partial\Omega$

Can be written as variational problem (for $A(\varepsilon(v)) = |\varepsilon(v)|^{p-2} \varepsilon(v)$)

Energy:
$$\mathcal{J}(w) := \int \frac{1}{p} |\varepsilon(w)|^p dx - \int fw dx$$

Minimize \mathcal{J} on $W_{0,\mathrm{div}}^{1,p}(\Omega) = \{v \in W_0^{1,p} : \mathrm{div}v = 0\}.$

p-Stokes (2/2)

Minimize
$$\mathcal{J}(w) := \int \frac{1}{p} |\varepsilon(w)|^p dx - \int fw dx$$
 on $W_{0,\mathrm{div}}^{1,p}$.

Pressure free formulation: For all $\xi \in C^{\infty}_{0,\mathrm{div}}(\Omega)$

$$0 = \langle A(\varepsilon(v)), \nabla \xi \rangle - \langle f, \xi \rangle = \langle A(\varepsilon(v)), \varepsilon(\xi) \rangle - \langle f, \xi \rangle.$$

Reconstruction of pressure:

By "De Rahm" exists pressure $q \in \mathcal{D}'$ with

$$-\mathrm{div}(A(\varepsilon(v))) + \nabla q = f.$$

Later: Recover regularity of pressure q

Gradients ∇v vs. symmetric gradient $\varepsilon(v)$

Function spaces: $W_{0,\mathrm{div}}^{1,p}(\Omega)$

Energy controls: $\int |\varepsilon(v)|^p dx$, recall: $\varepsilon(v) = \frac{1}{2} (\nabla v + (\nabla v)^T)$

 \Rightarrow Need control of ∇v by $\varepsilon(v)$

Pointwise: Not possible!

rigid-motions: v(x) = Qx + b with Q anti-symmetric

However, $\partial_j \partial_k v_l = \partial_j \varepsilon_{kl}(v) + \partial_k \varepsilon_{lj}(v) + \partial_l \varepsilon_{jk}(v)$.

Thus $|\nabla \varepsilon(v)| \le |\nabla^2 v| \le 3 |\nabla \varepsilon(v)|$.

Korn's inequality for p = 2

Case p = 2 and $v \in W_{0,\mathrm{div}}^{1,2}(\Omega)$:

$$\begin{split} \|\varepsilon(v)\|_{2}^{2} &= \int \varepsilon_{jk}(v)\varepsilon_{jk}(v) dx \\ &= \int \frac{1}{2}|\nabla v|^{2} dx + \int \frac{1}{2}\partial_{j}v_{k}\partial_{k}v_{j} dx \\ &= \int \frac{1}{2}|\nabla v|^{2} dx + \int \frac{1}{2}|\operatorname{div}v|^{2} dx \\ &= \frac{1}{2}\|\nabla v\|_{2}^{2} + \frac{1}{2}\|\operatorname{div}(v)\|_{2}^{2} \end{split}$$

Note: $\operatorname{div} v = \operatorname{tr}(\varepsilon(v))$

Thus, $\|\nabla v\|_2^2 \le 2\|\varepsilon(v)\|_2^2$.

Negative norm theorem (1/2)

What about $W_0^{1,p}(\Omega)$? Idea: $\nabla^2 u \sim \nabla \varepsilon(v)$.

Define:

$$\langle f \rangle_{\Omega} := \oint_{\Omega} f \, dx$$

$$L_0^p(\Omega) := \{ f \in L^p(\Omega) : \langle f \rangle_{\Omega} = 0 \},$$

$$W^{-1,p}(\Omega) := (W_0^{1,p'}(\Omega))^*.$$

Theorem (Negative norm theorem by Nečas)

$$\Omega$$
 bounded, $\partial\Omega\in C^1$. Then for all $u\in L^p_0(\Omega)$

$$\|\nabla u\|_{W^{-1,p}(\Omega)} \sim \|u\|_{L^p(\Omega)}.$$

Negative norm theorem (2/2)

Theorem

 Ω bounded, $\partial\Omega\in C^1$. Then for all $u\in L^p_0(\Omega)$

$$\|\nabla u\|_{W^{-1,p}(\Omega)} \sim \|u\|_{L^p(\Omega)}.$$

Easy part of the proof: $u \in L^p(\Omega)$, $H \in W_0^{1,p'}(\Omega)$

$$\langle \nabla u, H \rangle = -\langle u, \mathrm{div} H \rangle = -\langle u - \langle u \rangle_{\Omega}, \mathrm{div} H \rangle.$$

Thus $\left| \langle \nabla u, H \rangle \right| \leq \|u - \langle u \rangle_{\Omega} \|_{p} \|H\|_{1,p}$.

In particular, $\|\nabla u\|_{-1,p} \leq \|u - \langle u \rangle_{\Omega}\|_{p}$.

Difficult part: Later!

Korn's inequality

Theorem

 Ω bounded, $\partial\Omega\in\mathcal{C}^1$. Then

$$\|\nabla v - \langle \nabla v \rangle_{\Omega}\|_{p} \le c \|\varepsilon(v) - \langle \varepsilon(v) \rangle_{\Omega}\|_{p}, \qquad \text{for } v \in W^{1,p}(\Omega).$$
$$\|\nabla v\|_{p} \le c \|\varepsilon(v)\|_{p} \qquad \text{for } v \in W^{1,p}_{0}(\Omega).$$

Proof: Using $\partial_j \partial_k v_l = \partial_j \varepsilon_{kl}(v) + \partial_k \varepsilon_{lj}(v) + \partial_l \varepsilon_{jk}(v)$.

$$\|\nabla v - \langle \nabla v \rangle_{\Omega}\|_{p} \sim \|\nabla^{2}v\|_{-1,p} \sim \|\nabla \varepsilon(v)\|_{-1,p} \sim \|\varepsilon(v) - \langle \varepsilon(v) \rangle_{\Omega}\|_{p}.$$

For $v \in W_0^{1,p}(\Omega)$ we have $\langle \nabla v \rangle_{\Omega} = \langle \varepsilon(v) \rangle_{\Omega} = 0$.

The pressure

We get v as $W_{0,\mathrm{div}}^{1,p}(\Omega)$ -minimizer of

$$\mathcal{J}(w) := \int \frac{1}{p} |\varepsilon(w)|^p dx - \int fw dx$$

Pressure free formulation: For all $\xi \in W^{1,p}_{0,\mathrm{div}}(\Omega)$

$$\langle A(\varepsilon(v)), \nabla v \rangle = \langle f, \xi \rangle.$$

De Rahm gives distributional pressure q with

$$\langle A(\varepsilon(v)), \nabla v \rangle + \langle \nabla q, \xi \rangle = \langle f, \xi \rangle$$
 for all $\xi \in C_0^\infty(\Omega)$.

Estimate for pressure:

$$\|q - \langle q \rangle\|_{p'} \sim \|\nabla q\|_{-1,p'} \leq \|A(\varepsilon(v))\|_{p'} + \|f\|_{-1,p'} \leq c(f).$$

Summary

Theorem

The p-Stokes system (with $f \in W^{-1,p'}(\Omega)$)

$$-\mathrm{div}(A(arepsilon(v))) +
abla q = f$$
 $\mathrm{div}v = 0$ $v = 0$ on $\partial\Omega$

has a unique solution $v \in W^{1,p}_{0,\operatorname{div}}(\Omega)$ and $q \in L^{p'}_0(\Omega)$.

Uniqueness of v: Energy is strict convex

Uniqueness of q: Fixed the mean value of q

Part IV

Maximal function and covering theorems

Maximal function

For $f \in \mathcal{L}^1_{\mathrm{loc}}$ define the (uncentered) maximal function

$$(Mf)(x) := \sup_{B\ni x} \int_{B} |f(y)| \, dy$$

(supremum over all balls B containing x)

For $0 \in B$ the mapping $f \mapsto \int_{x+B} |f| dy$ is continuous.

Thus, Mf is l.s.c. (lower semi continuous)

- ② $\{Mf > \lambda\}$ is open.

Basic properties

Recall:
$$(Mf)(x) := \sup_{B \ni x} \int_{B} |f(y)| dy$$

$$M$$
 is sub-linear: $M(f+g) \leq Mf + Mg,$ $M(sf) \leq |s|Mf$ for $s \in \mathbb{R}$.

$$L^{\infty}$$
 estimate: $\|Mf\|_{\infty} \leq \|f\|_{\infty}$.

 L^1 estimate: If $f \in C_0^\infty(\mathbb{R}^n)$ with $f \neq 0$, then Mf decays as $|x|^{-n}$. Thus, $Mf \not\in L^1$.

The L^1 -case

Define
$$\|f\|_{\text{w-}L^1} := \sup_{\lambda > 0} \lambda \left| \{ |f| > \lambda \} \right|$$
 (quasi-norm) Let

$$\operatorname{w-}L^1 := \{f : \|f\|_{\operatorname{w-}L^1} < \infty\}$$
 (quasi-Banach space)

$$\lambda |\{|f| > \lambda\}| = \int \lambda \chi_{\{|f| > \lambda\}} \, dx \le \int |f| \, dx = \|f\|_1.$$

Thus $L^1 \hookrightarrow w-L^1$.

Claim

$$||Mf||_{W^{-}L^{1}} \leq c ||f||_{1}.$$

Covering theorem (1/2)

For
$$\lambda > 0$$
 let $\mathcal{O}_{\lambda} := \{\mathit{Mf} > \lambda\}.$ (open set)

For all
$$x \in \mathcal{O}_{\lambda}$$
 exists B_x : $\int_{B_X} |f| dy > \lambda$.

We have
$$B_x \subset \mathcal{O}_\lambda$$
 and $\mathcal{O}_\lambda = \bigcup_{x \in \mathcal{O}_\lambda} B_x$.

Theorem (Basic covering theorem)

Let \mathcal{O} be open, $\{B_x\}$ covering of balls with

- \bullet $\sup_{x} |B_{x}| < \infty$

Then there exists countable, pair wise disjoint $\{B_j\}$ with $\bigcup_x B_x \subset \bigcup_j 3B_j$.

Covering theorem (2/2)

Theorem (Basic covering theorem)

Let \mathcal{O} be open, $\{B_x\}$ covering of balls with

Then there exists countable, pair wise disjoint $\{B_j\}$ with $\bigcup_x B_x \subset \bigcup_j 5B_j$.

Simplified proof for $\{B_x\}$ finite:

Start with $\mathcal{X} := \{B_x\}$ and $\mathcal{Y} := \emptyset$. Iteratively, do:

- **①** Find biggest B_x from \mathcal{X} and move it from \mathcal{X} to \mathcal{Y} .
- **②** Remove from \mathcal{X} all B_x , which intersect some $B_j \in \mathcal{Y}$. $(\Rightarrow B_x \subset 3B_j)$
- Start again.

The limit set \mathcal{Y} is the desired family $\{B_i\}$.

$w-L^1$ estimates

Recall:
$$\int_{B_x} |f| dy > \lambda$$
 and $\{B_x\}$ cover $\mathcal{O}_{\lambda} = \{Mf > \lambda\}$.

By covering theorem \Rightarrow pair wise disjoint $\{B_j\}$ and $\{5B_j\}$ covers \mathcal{O}_{λ} .

$$\lambda \left| \{ Mf > \lambda \} \right| \le \lambda \sum_{j} |5B_{j}| \le \lambda 5^{n} \sum_{j} |B_{j}|$$
$$\le 5^{n} \sum_{j} \int_{B_{j}} |f| \, dy \le 5^{n} \int_{\mathbb{R}^{n}} |f| \, dx = 5^{n} ||f||_{1}.$$

Theorem

$$||Mf||_{W_{\bullet}I^{1}} \leq 5^{n}||f||_{1}.$$

Marcinkiewicz

Theorem (Real interpolation)

Let be T sub-linear with $T:L^{\infty}\to L^{\infty}$ and $T:L^{1}\to w\text{-}L^{1}$.

Then $T: L^p \to L^p$ for all p > 1.

$$\frac{1}{p}\int_{\mathbb{R}^n}|Mf|^p\,dx=\int_{\mathbb{R}^n}\int_0^\infty\chi_{\{Mf>\lambda\}}\,d\lambda\,dx=\int_0^\infty\lambda^{p-1}\big|\{Mf>\lambda\}\big|\,d\lambda=:(I).$$

Let $f_{0,\lambda}=f\chi_{\{|f|\leq \lambda/2\}}$ and $f_{0,\lambda}=f\chi_{\{|f|>\lambda/2\}}.$ Then $f=f_{0,\lambda}+f_{1,\lambda}.$

Since $Mf_{0,\lambda} \leq \lambda/2$, we have $Mf_{1,\lambda} \geq Mf - Mf_{0,\lambda} > \lambda/2$.

$$(I) \leq \int_0^\infty \lambda^{p-1} \left| \left\{ M f_{1,\lambda} > \lambda/2 \right\} \right| d\lambda \leq c \int_0^\infty \lambda^{p-2} \int_{\mathbb{R}^n} |f_{1,\lambda}| \, dx \, d\lambda$$
$$= c \int_{\mathbb{R}^n} |f(x)| \int_0^{2|f(x)|} \lambda^{p-2} \, d\lambda \, dx = c \int_{\mathbb{R}^n} |f|^p \, dx.$$