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p-Laplace and basic properties
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The Dirichlet problem for the Laplacian
Strong formulation

—Au="f

on Q
u=0 on 9Q,
where f is given data.

Classical solution: Find u € C2(Q) N C%(Q).

Variational approach: Classical solution minimizes

J(w) :=/ 1|VW|2dx—/fwdx=/ 1|VW|2dX—<f, w).
2 2
on X :={w e CYQ) : w|pq = 0}.



Variational approach

First variation:
(60J)(w)(§) := directional derivative

d

t=0

For J(w) = [, 3|Vw|* dx — (f,w), we have

(B)w)(E) = 5 (3070w + ). T 1)~ (Fowor )|
= <VW: V€> - (fa §>
= (—Aw —f,§)
Minimizer u < (0J)(u)(§)=0forall { < —Au =f .
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»»»»»»»»»» p-Laplacian

p-Laplacian
Let 1 < p < 0.
1
Variational definition: Minimize J(w) ::/ ;]VW\” dx — (f, w)
Q
on Sobolev space Wol’p(Q) (WhP-closure of C§°(Q2)).

Euler-Langrange equation: u € Wol’p(Q) minimizer, then

0L (5)()(E) = j’t( 29w+ )P b= (o + tf))

= (|Vw[P7>Vw, VE) — (f,w).

t=0

Thus — div(|[Vw[P2Vw) —f =0 in (W, P(Q))*

=:Apw
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The maximum principle (1/2)

Let h be harmonic, i.e. —Ah=0.

= for every ball B: u(x) = ][ u(y) dy
B(x)

Theorem (Strict maximum principle)

h cannot have strict maximum in interior!

Theorem (Maximum principle)
min h(0Q2) < min h(2) < max h(2) < max h(0Q)

In other words: h(2) C h(09Q).




The maximum principle (2/2)

Theorem

Let u € W01’2(Q) with —Au < 0. Then u <0 on Q. J

Proof:

Define u+ := max {u, 0} = x(uz0pu € Wo*(?)

Then Vut = x(,>0,Vu.

IVt |3 = (Vu, Vut) = (u*, f) <0,

Thus ut =0, i.e. u<0.



Convex hull property (1/4)

Vectorial: u : Q — RN

Theorem (Convex hull property)
Let —Ah=0. Then h(Q) C conv hull A(9Q).

This generalizes the maximum principle!

Proof: Use linear functionals and the scalar maximum principle.

Theorem (Convex hull property — non-linear)
Let —Aph = —div(|Vh[P"2Vh) = 0. Then h(R) C conv hull h(RQ).

Proof: By projection, see below!



Convex hull property (2/4)

The set K := conv hull h(0R2) is convex.

Use nearest point projection

Mkx := argmin ¢k |x — y|.
Then [NMxx —NgY| < |x—y|

Define (Mkh)(x) := Mk (h(x))

Then |VIxh| < |VA|

(point-wise projection)

(since difference quotients are reduced!)
= F = E DA
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Convex hull property (3/4)
Recall |VIkh| < |Vh.

Since u(0Q2) C K = conv hull h(0R2), we have h = Mk h on 0.
1 1
) =/ L1 UnhlP dx < / LIhP dx < T(h).
Qb QP

Uniqueness (with same boundary values) implies h = lNkh.
= No projection needed!
Thus h(2) C K = conv hull h(09).

= Convex hull property!.



Convex hull property (4/4)
Theorem (Scalar case!)
Let u € W, P(Q) with —A,u < 0. Then u <0 on Q. J

Proof:
Let K := (—00,0].

J(W):/1|Vw|pdx—/fwdx with f < 0.
QP Q

Then J(Mku) < J(u) and Ngu = u on 09.

Uniqueness implies Mxu = v on Q.

Thus, u(Q) C K = (—o0,0].



Part Il

p-harmonic functions



p-harmonic functions

We say that h is p-harmonic if

—Aph = —div(|Vh[P2Vh) = 0.
p-harmonic functions are local minimizers of

Tw) = [ 5 IVh o,
Qp

ie. J(u) < J(u+tg) forall £ € GH(Q).
Define A(Q) := |Q|P?Q. Then

—div(A(Vu)) = 0.



Monotonicity (1/3)
Consider (A(Vu) — A(Vw),Vu —Vw)

For example used for uniqueness.

Pointwise estimate (with [Q, P]; := (1 — t)Q + tP)

(A(P) = A(Q) - (P~ Q) = (A(P) ~ A(Q) (P — Q)

J

Ld
= | S0Pl & (P -0,

:/1 (OkAN[Q, Ple)  dt (P— Q)k(P— Q);
0 N e

MM,

=IMIP2(5) 1+ (p—2) Tirk)

=] F = = E DA



Monotonicity (2/3)

Note that
IMP=2 (85 + (p - 2)“|“|”k) > P2 min {p — 1, 1}
Thus,
(A(P) -~ A(Q))- (P~ @) > < | Q. PLIP 2 at P - QP
> c(1Q1+ P2 P - QP2
Similarly,

(A(P) — A(Q)) - (P = Q) ~ (IQ + |PI)’~* [P~ QP,
[A(P) = A(Q)] ~ (IQI + |P)P~2 [P - Q.

= F = = E DA



Monotonicity (3/3)
Recall A(Q) = |Q|P2Q.

Define V(Q) = |Q|% Q.

2 _ Q). Qand Q) _AQ _ Q@
Then [V(Q)F = A(Q)- Qand = 1% = 0% = o0

Then |V(P) — V(Q)| ~ (IQ| +|P))*Z" [P~ Q.
Theorem
(AP) = A(Q)) - (P — Q) ~ (1Q] + |PI)*"2|P — Q> ~ [V(P) — V(Q)I?,
A(P) — A(Q)| ~ (1Q] + |PI)*~2 |P - Q|.

=] F = = E DA



Caccioppoli

Start with (A(Vu),VE) =0 for &€ € W, P(Q).

Let £ € C§°(2B) with xp < & < x25 and ||V, < cr™?
Choose ¢ = (u— (u)2p)7”". Then

(A(Vu),nVu) = (A(Vu), (u— (u)28)V(n")).
= /np’]Vulp dx < c/np/_1|Vu|p_1—|u — <ru>28| dx
Young's inequality implies:

Lemma (Caccioppoli estimate)

][|Vu|pdx < c][
B

2B

p

u—(u)2p dx




Reverse Holder's estimate

Lemma (Caccioppoli estimate)

][|Vu|pdx<c]["

u)28||?
Then Poincaré implies

Lemma (Reverse Holder)
For some 6 € (0,1)

][\Vu|p dx < c<][ |V ul?? dx)
B




Gehring
Lemma (Gehring)

Assume that for all balls B and some 6 € (0, 1)

1
0
fifiacse( fieoex) + fielon
B 2B B

Then there exists s > 1 such that

1 1
<][|f|sdx) < c][|f|dx—|—c <]l|g|5dx)
B 2B B

1
= <][|Vu|5p dx) < c][ |VulP dx
B 2B D <@ <=y «=» =T Dac
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Higher order (1/2)

Difference quotient technique:  74f(x) := Fx+ l|7l)7|_ f(x)

Test function & = 7_p,(nP 74(u — a)) with a linear.

For p = 2:

(Vu,VE) = (tyVu, V(1 Thu))

= /772|7'hVu|2 dx + /ThVUTh(u — a)V(nz) dx
With h — 0 we get /772|V2u|2 dx < C/n|V2u| |V(”r_ a)| dx.

2
We get /|V2u|2dx§c/ ‘M dx.
B B r

=} = = =



Higher order (2/2)

Difference quotient technique:

i (x) = f(x+h) — f(x).
[l
Test function & = 7_p,(nP 74(u — a)) with a linear.

p # 2: Main part gives (T, A(Vu), 7”7,V u) ~ / [T V(Vu)]? dx.

Now, h — 0 gives /77”I|VV(VU)|2 dx < lower order term.
Attention: This is not u € W?2P.



’LMU
Shifted N-functions
AQ=1QP2Q,  VQ=1Q7Q  ¢t)="1r.
Shifted ¢-functions: ,(t) ~ (a+ t)P~2t? [Diening, Ettwein '05]
(A(P) = A(Q)) - (P = Q) ~ [F(P) = F(Q)I* ~ ¢ip)(IP - Q)
[A(P) — A(Q) ~ ¢lp (P = Q)
Aj-condition: ¢,(2t) < cp,(t).
Young’s inequality:  v/(s)t < d9(s) + c5 ¥(t)
Conjugate function: ©*(s) = sup;>¢ (st — ¢(t)).

Then ¢*(t) = %t”/ and p** = ¢.
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Higher order reverse Holder (1/2)
For £ € Wol’p(Q) and arbitrary constant Q

0= (A(Vu), V&) = (A(Vu) — A(Q), V¢).

Let £ = nP' (u— q) with g linear and Vg = Q. Then

7 (A(T0) = A@) - (V= Q)de < ¢ [ 1 el (IVu - Q)

u_q’dx

With (A(P) — A(Q)) - (P — Q) ~ ¢)|(|P — Q|) and Young's inequality

][soo|(|Vu —Qpdx<c ][s0|o< — qD dx.
B 2B
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Higher order reverse Holder (2/2)
- l) dx.
r

fealvu- Qe <c faal
B 2B

Poincaré’s inequality implies (for (u — g)2g = 0)

eIV~ Q) dx < ( f ¢lo(IVu— Q) dx %
/ (f )

B 2B

Thus, for all balls B

fvewa - st oz e (fiviea - vz dx>%

B B
CRE= = =» T 9ac



Subsolution property (1/2)
Formally £ = 0;(n0oj;u)

0 = (OkAk(Vu), 9j(ndju))
= (0jAk(Vu), Ok(ndju))
= (9jAK(Vu), n9kdju)) + (9;AK(V u), (Okn)dju)) =: (1) + (II).
Then (/) ~ /|Vu|p_2|V2u|2n dx ~ / IVV(Vu)|?ndx > 0.

Moreover,

n— [ f,k+(p 2)a|a|k) 00 (1194l

—:a(x)

=] F = = E DA



Subsolution property (2/2)
Recall: a(x) =

ojud,
Sk + (p—2)2 ol

Vul?
Then A1d < a(x) < AId and

(tensor)

—div(a(x)V(%|Vu|”)) <o.

L>- estimates:  sup |[VulP < ¢ ][ |V ulP dx
B
Harnack inequality

2B

]l|vu|de < cinf [Vul? < c (sup|Vul? — sup|[Vul?)
B 2B B
o = - = a
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Decay estimate
After a few more steps ...

Theorem (decay estimate)
There exists o > 0 such that

F Vv - vTape P o< e (7 ) F V(T — (VT o
B,

Br

By characterization of C%® = Ve C%®

Since V1 is Holder continuous: Vu € C%8,

This includes any n, N > 1.



In the plane (1/3)

Consider —A,h = 0 on R? (scalar valued, i.e. N =1).
[Bojarski, lwaniec '83]: singular points Vu(x) = 0 are isolated.

Detailed study by: Iwaniec-Manfredi, Dobrowolski, Aronsson, Lindqvist

Aronsson: Hodograph transform

We will use a shorter but formal approach here!



In the plane (2/3)
Define

qg:=Vyu
v(q) =g x — u(x)
Then x=Vgq

v=(Vu)!
Thus —div(|Vu|P?Vu) = 0 becomes

0=|VulP~ 2(Au—|—( _p)KtY
Hence, 0 = V2

50;0ku

Vul? )
(Id+(p—-2)§®q) =

We get for n =2

(Vev) ™ (ld+(p-2)§ 2 q)
: Ozvgv:(Id—l-(p'—Q)f]@a)

=} 5 = E 9DaAc
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In the plane (3/3)
Recall: 0=VZv: (Id+ (p' —2)§®q)

Ansatz: v(q) = |q|“q1g2 works with 0 = a? + (p + 2)a + (4 — 2p).

— A/ p2 —
We get u € CO7 with v = TPt 6:_ngzp 2

5

»>0<

D :=Vu o
A:=A(Vu) Al
V= V(Vu)

N
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p-Stokes

=] F = = E DA



Motion of fluid

Incompressible fluids with constant density
Orv —div(S) + [Vv]v+Vg=f
divy =0

plus boundary conditions

with v = velocity

q = pressure
Convective term [Vv]v by change of coordinates!

Frame indifference (objectivity) gives: A= Ae(v))
with e(v) = (Vv + (Vv)7)

= F = = £ DA
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Non-Newtonian fluids (or generalized Newtonian)
Properties of fluids are described by A(e(v)).

Newtonian fluid: water, air
A(e(v)) = 2ve(v)

Then div(A(e(v)) = vAv + vVdivy = vAv.

Power law fluid (generalized Newtonian): honey, ketchup, blood
p—2
ae() = {0 F 0P el
(" + [e(v)7) 2 e(v),
with 1 < p < 0o and 7 > 0.
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p-Stokes (1/2)

Consider time independent flow; no convection

—div(A(e(v))) +Vg="f

divv =0

v=0 on 02
Can be written as variational problem (for A(e(v)) = |e(v)|P%e(v))

Minimize J on

Energy: J(w) :=/%|e(w)|pdx—/fwdx
Wyk

0,div

(Q)={ve Wol’p . divv = 0}.
o =l E E DA
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p-Stokes (2/2)

Minimize J(w) := / %|e(w)|p dx —/fw dx on W&;ﬁv.
Pressure free formulation: For all £ € (55, ()

0= (A(e(v)), V&) —(

Reconstruction of pressure:

§) = (Ale(v)),e(€)) — (£, €)

By “De Rahm” exists pressure g € D’ with

—div(A(e(v)))+ Vg =".
Later: Recover regularity of pressure g



Gradients Vv vs. symmetric gradient e(v)
Function spaces: Wolﬁv(Q)
Energy controls: [ |e(v)|? dx, recall: e(v) = (Vv + (Vv)T)

= Need control of Vv by g(v)

Pointwise: Not possible!

rigid-motions: v(x) = Qx + b with Q anti-symmetric
However,  0;0kvi = 0jew(v) + Okejj(v) + Oigj(v)-

Thus  |Ve(v)| < |V2v| < 3|Ve(v)).



Korn's inequality for p = 2

Casep=2andv e Wolhziv(Q):

()13 = [ env)en(v) e
1. o 1
/§|Vv| dx+/§8jvk8kvj dx

1 1
=/§|Vv|2 dx—i—/§|divv|2 dx

1, 5 1. .
= SIVvI3+ S ldiv(v)I3

Note: divv = tr(e(v))

Thus, — [Vv]3 < 2[le(v)]3.



Negative norm theorem (1/2)
What about W, P(Q)?

Define:

Idea: V2u ~ Ve(v).

(a ::][fdx
Q

L5(Q) == {f € LP(Q) : (F)a
WLP(Q) == (WP ().

= 0})

Theorem (Negative norm theorem by Necas)

Q bounded, 9Q € Ct. Then for all u € L5(Q)

IVullw-10@) ~ lullio()-
= 5 Q
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Negative norm theorem (2/2)
Theorem

Q bounded, 9 € C. Then for all u € L§(S)

IVullw-1@) ~ 1l ()
Easy part of the proof: u € LP(Q), H € W&’p,(Q)

Thus

(Vu,Hy = —(u,divH) = —(u — (u)q,divH).
[(Vu, H)| < [lu— (u)all 1],
In particular,

IVull 1, < llu=(w)all,
Difficult part: Later!



Korn's inequality
Theorem

Q bounded, 9Q € CL. Then

Vv = (Vvall, < clle(v) = (e(V))allp
IVvil, < clle()l,

for v.e WP(Q)

forv € W(;L’p(Q)
Proof: Using 6j3kv, = 6jek,(v) + 8k€/J-(v) + 8/ejk(v).

For v € W)P() we have (Vv)q = (g(v))q = 0.

IVv = (Vv)all, ~ IV2v]|_y, ~ [Ve()] 1, ~ lle(v) = (e(v)all,



The pressure
We get v as Wol’d”iv

(€2)-minimizer of

Tw)i= [ Sletw)ax— [ s

Pressure free formulation: For all £ € Wg’p
K

div(Q)
(Ale(v)), Vv) = (f, ).

De Rahm gives distributional pressure g with
(A(e(V)), V) + (V&) = (F,€)  forall € € G*(Q)
Estimate for pressure:

lg = (@l ~ [IVall g, < [[AEW)l + [IFll -y, < c(F)-
o 5 E E DA
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Summary
Theorem

The p-Stokes system (with f € W=1F'(Q))

—div(A(e(v))) + Vg=f

divy =0

v=20 on 02
has a unique solution v € W,» (Q) and q € Lgl(Q).
Uniqueness of v: Energy is strict convex

Uniqueness of g: Fixed the mean value of g



Part IV

Maximal function and covering theorems



Maximal function
For f € LllOc

define the (uncentered) maximal function

(MF)(x) = sup ][ ()] dy
B

(supremum over all balls B containing x)
For 0 € B the mapping f +— f

«45 |l dy is continuous.
Thus, Mf is |.s.c. (lower semi continuous)
© Mf(x) < liminf Mf(z)

Q@ {Mf > A} is open.



Basic properties

Recall: — (MF)(x) = sup ]l 1£(y)| dy
B

M is sub-linear:

M(f + g) < Mf + Mg,
M(sf) < |s|Mf
L°° estimate:

for s € R.

IMFllog < [[flloo-

L! estimate: If f € C§°(R™) with f # 0, then Mf decays as |x| ™"
Thus, Mf ¢ L.



The L!-case

Define ||f]|,,.;2 = sup M|{|f| > A}|
A>0

(quasi-norm) Let
w-Lt = {f 2 |[fllypn < 00}

(quasi-Banach space)

Thus L1« w-L1.

N{IF > A} = / AX((fony dx < / 1] dbx = |71,
Claim
Ml s < ]l

u]
o)
n
it
N)
»
i —



Covering theorem (1/2)
For A > 0 let

Oy = {Mf > \}.

(open set)

For all x € O exists By: ][|f| dy > A\

Bx
We have B, C O, and

0/\ = UXEOA BX
Theorem (Basic covering theorem)

Let O be open, {Bx} covering of balls with
Q sup, By < oo

Q@ 0Ocl,B..

Then there exists countable, pair wise disjoint {B;} with [J, B« C |J; 3B;.
=} 5 E E 9DaAc
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Covering theorem (2/2)

Theorem (Basic covering theorem)
Let O be open, {By} covering of balls with
Q sup, [By| < o0
Q@ O0cl,B..
Then there exists countable, pair wise disjoint {B;} with [J, B« C |J; 55;.

Simplified proof for {B,} finite:

Start with X' := {Bx} and ) := ). Iteratively, do:
@ Find biggest By from X and move it from X to ).
@ Remove from X all B, which intersect some B; € ). (= B« C 3B)
© Start again.

The limit set ) is the desired family {B;}.
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w-L1 estimates

Recall: ][|f| dy > X and {By} cover Oy = {Mf > A}.
Bx

By covering theorem = pair wise disjoint {B;} and {5B;} covers O,.

A{MF > M <A ) (5B, < A57) |B)]

J J
<5"Y" [ irldy <5 [ iriox= 5],
Theorem

IMF[l,o2 < 5°[IF]l;-

u]
o)
n
it
N)
»
2 N—
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Marcinkiewicz
Theorem (Real interpolation)

Let be T sub-linear with T : L® — L>® and T : 1 — w-L1.
Then T : LP — LP for all p > 1.

1 S 00
— [ |MfPdx = / / X{Mmr>ay dAdx = / NPT {MF > M} dX =: (1).
P JRrn R JO 0

Let fox = fxqir<r/2y and fox = FXqf>a/2)- Then f=fox + fix.
Since Mfy x < A/2, we have Mfy y > Mf — Mfy x > \/2.

(V< [t iMiy > v} ar<e [T a0 [ hafaxdn
0 0 R

2/f(x)
:c/ \f(x)|/ )J’zd)\dx:c/ |£|P dx.
Rn 0 Rn
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