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Consider the flow of an incompressible, viscous fluid in a domain {2 C R® which is

described by the equations of Navier-Stokes

ou+u-Vu—Au+Vr = 0, inQ) x (0, 00),
divu = 0, in Q x (0, 00),
u(0) = wug, in Q.
Here, u and 7 represent the velocity and pressure of the fluid, respectively.
In this talk we consider basic properties of the linear Stokes equation in the LP-
setting for 1 < p < oo and later on also for the case p = co. Topics we discuss

include

e Helmholtz projection and the space L2 ()
e Resolvent estimates in half space R’}

e The Stokes semigroup on LP(Q2) for various type of domains 2 C R™
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In this talk we continue our investigation of the Stokes equation in various domains
QC R, ie.
Ou—Au+Vr = 0, inQ x (0, 00),
divu = 0, in Q x (0, 00),
u(0) = wug, in €.
Here, u and 7 represent the velocity and pressure of the fluid, respectively.

We consider in particular domains €2 C R™ for which the Helmholtz projection is
known to exist only for certain values of p and sketch the proof of a recent result [4]
which says that the Stokes operator admits maximal LP-regularity on L?(2) for a
certain p € (1, 00) provided the weak Neumann problem is solvable on these domains
in the LP-sense for this value of p. Furthermore, we discuss conditions implying that
the Stokes operator admits a bounded H*-calculus on L2(£2).
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In this talk we investigate the question of local and global solvability of the Navier-

Stokes in domains 2 C R", i.e.

ou+u-Vu—Au+Vr = 0, inQ x (0, 00),
divu = 0, in Q x (0, 00),
u(0) = wup, in Q.
This question has been considered by many authors in various scaling invariant

spaces, in particular in

3
P

H2(R®) — L}(R®) © Bpoa ? (R®) — BMO ' (R®) — By (R®),
where 3 < p < co. The space BMO™!(R®) is the largest scaling invariant space

known for which the above equation is well-posed. Topics we discuss include

e Gradient and LP — L? smoothing properties of the Stokes semigroup,
e Kato iteration scheme,
e Mild and classical solutions

e local and global solutions for small data for n = 2 and n = 3.
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Fluid-Solid Interactions: Part I:
The case of Newtonian Fluids

Matthias Hieber

TU Darmstadt

Department of Mathematics, Schlossgartenstr. 7, 64289 Darmstadt, Germany

The study of the motions of rigid bodies immersed in a fluid is a classical problem
of fluid mechanics. In this talk we develop an LP-theory for strong solutions to the
fluid-rigid body interaction problem, first for Newtonian fluids and later on in Part
IT for generalized Newtonian fluids. The LP-theory developed in this first part is not
only interesting for its own sake but it will be of central importance in the case of
generalized Newtonian fluids where the assumption p > 5 will be needed.

The fluid’s motion is governed by the equations,

v+ divT(v,q)+ (v-V)v=f in Qp,
divv =0 in Qp,
v=wvg on Qr,
v(0) = vo in D(0),
where v and ¢ denote the velocity and pressure of the fluid and T(v,q) its stress
tensor. The fluid equations are coupled by the balance equations for the momentum

and the angular momentum of the rigid body,

mn'(t) + fr(t) T (v,q)(t,z)n(t,r)do = F(t), t€R,,

(J) (1) + fogo (& — 7e(8)) X T(w, 0)(t, ), 2) do = M(t), t € Ry,
1(0) = 1o,
w(0) = wo,

which contain the drag force and the torque exerted by the fluid onto the body.
In this first part we show the existence of a unique, local solution in the case of a

Newtonian fluid.
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In this talk we continue our investigation of strong LP-solutions to the fluid-rigid

body interaction problem, now for generalized Newtonian fluids
The fluid’s motion is governed by the equations,

v+ divT(v,q)+ (v-V)v=f in Qp,
divv =0 in Qp,

v =vg on Qr,
v(0) = vy in D(0),

where the stress tensor T(v, g) is given by

T (v, q) := u(|€HEM — qld,
where for the viscosity p we assume that y € CH'(R,;R) satisfying p(s) > 0 and
wu(s) + 2sp'(s) > 0 foralls > 0. The fluid equations are again coupled by the

balance equations for the momentum and the angular momentum of the rigid body,

n'(t) + fr(t) T(v,q)(t,z)n(t,x)do = F(t), teR,,

(Jw)'(t) + fr(t) —z.(t)) x T(v,q)(t, z)n(t,z)do = M(t), t € Ry,
1(0) = 1o,
w(0) = wo,

The dependence of the viscosity on the shear rate implies that the operator A given

by
A(); = (div (u(|E@[3)EM));

= (€Y PR)Av; + 24/ (|EW Z £; eklﬁalvk,

7,k,0=1

is quasi-linear. Freezing A at a reference solution v, we obtain the linear operator

A, given by

],kl 1

2 Av; + 24/ (JE@

(Aw)i = p(l€™)



and investigate the above fluid rigid body interaction problem as a quasilinear evo-

lution equation.
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Consider the equations of Navier-Stokes equations with Coriolis force, i.e.

U —vAu+wes xu+u-Vu+Vp = f,
divu = 0,

u(0) = wug,

on all of R®, where w denotes the speed of rotation and es is the unit vector in the
z3-direction. If w = 0, the classical Navier-Stokes equations have been considered

by many authors in various scaling invariant spaces, in particular in
HE(RP) o> L3(RP) = Byae *(RY) <5 BMO™\(R®) = Bl (R?),

where 3 < p < co. It is now a natural question to ask whether, for given and fixed
w > 0, there exist global solutions to the above equation provided the initial data
belong to some suitable function spaces. In this context, Hieber and Shibata proved
a global well-posedness result for initial data being small with respect to H %(R?’).
Generalizations of this result to Fourier-Besov spaces are due to Konieczny and
Yoneda, and Iwabuchi and Takada. In this talk, we continue this line of research
and show that the above equations admit a unique, global solution provided the
initial data are small in various Fourier-Besov spaces.

Moreover, we also investigate the two-dimensional setting and show that this
case there exists a unique, global mild solution for all, ( not necessarily small),
ug € LP(R?) for 2 < p < 0.
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Consider the the initial value problem for the three dimensional Navier-Stokes equa-
tions with rotation in the half-space Rﬂ‘r subject to Dirichlet boundary conditions,

1.e.

du—vAu+Qes xu+(u-V)u+Vp=0, t>0, z€R3,
divu=0, ¢t>0, ze€R},
u(t,z1,22,0) =0, t>0, 21,290 € R
u(0,z) = uy, z€R},
Here, e3 denotes the unit vector in x3-direction and the the constant €2 € R is called
the Coriolis parameter. It is well known that the above system has a stationary

solution which can be expressed even explicitly as

up(rs) = Ue(l — e %% cos(x3/d), e 2/ sin(x3/6),0)7,
pe(z2) = —Qucots,
where § is defined by § = (%)"/? and ue > 0 is a constant. This stationary

solution is called the Fkman spiral. We consider perturbations of the Ekman spiral

by functions u solving the above equation. To this end, set
w:=u—ug, and ¢:=p—pg.

Since (ug,pg) is a stationary solution of (), the pair (w,q) formally satisfies the

equations

dw — vAw + Qes x w+ (ug - V)w + wsdsup + (w-V)w+Vg = 0, t>0, zeR},

divw = 0, t>0,z€eR,
w(z1,29,0) = 0, ¢t>0, 71,29 € R,
w(O,x) = Wp, T € Ri_,

where wy = ug — ug.
In this talk we prove that the Ekman spiral is nonlinearly stable with respect to

L?-perturbations provided the corresponding Reynolds number is small enough.
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In this talk we consider the resolvent approach to the Stokes operator in L (1)

for a large class of domains and prove a priori estimates for the resolvent problem

Aw—Av+Vqg = f in Q
divy = 0 in €,
v = 0 on 09,

of the form

Alllollzeoq) + A2 Vol [pge) + I/\I”/%Slelgllvzvllmm

. A-1/2)

+ X sup |[Vl[r@, | _1yn) < Cllfloo-
TEQ @,/
Here f € L°(2), where L°(12) is defined for any open set 2 C R" as
Le(Q) = {f € L®(Q) : / f-Vodr=0 forall ¢e W4 (Q)},
Q

where W(Q) = {¢ € LL.(Q) : Vg € L}(Q)}. Our approach is inspired by the
Masuda-Stewart approach for elliptic operators.

Combining the above a priori estimate with a recent approximation argument due
to Abe and Giga for bounded and exterior domains €2, we obtain in particular that
the Stokes operator A generates an analytic semigroup 7" on L°(2) of angle /2

provided € is a bounded or exterior domain having C3-boundary.
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