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Abstract of the lecture

We assume thd® is a domain inR* and7" > 0. We denote&r := Q x (0,7). We deal with
the Navier—Stokes initial-boundary value problem

Ov+v-Vv = —Vp+rvAv in Qr, (N
divv = 0 in Qr, (2)
v=20 onof x (0,7), 3)

vV = Vo in Q x {0}. 4

o The notion of thd_eray—Hopf weak solutioof problem (1)—(4) and the basic information on
its existence and related properties (ilre-weak continuity, an associated pressure, energy
inequality and equality, strong energy inequality).

o Question of uniqueness of weak solutions of problem (1)—(4), known theorems, importance of
the energy inequality in studies of uniqueness.

o Question of regularity of a weak solution of the problem (1)—(4) — one the the so oailled-
nium problems

o Leray’s proposal for the construction of a singularity and the related negative resultasNe
RUzicka, Sveak [4].
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o Serrin’s criterion for the interior spatial regularity of the weak solutgsome generalizations.
Recall that the criterion assumes thate L"(t1,t9; L5(?)), where0 < ¢; < to < T and
Q' c Q, for certain exponents ands satisfying the conditio/r + 3/s < 1.

o What one can say on regularity of the time derivativevadnd the pressure it x (t1,t2)
under Serrin’s conditions? Relation to the used boundary conditions.

o A Serrin—type criterion for the regularity of weak solutienn the whole domain.

o A remark on the two—dimensional case: here, the weak solution automatically belongs to Ser-
rin’s regularity class.
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o Leray’s “Theoeme de Structure” on the partial regularity of a weak solutipsatisfying the
strong energy inequality. (The intervél), T") can be split to the union of a system of open
intervals where the solution is “smooth” and aBetvhose 1-dimensional Lebesgue measure,
or evenz—dimensional Hausdorff measure, is zero.)

o Several definitions of the noticegular pointof weak solutionv (in the sense of [1], [2], [3],
[4] and others), relations between various definitions.

o The notion of the so callesuitable weak solutiofin the sense of Caffarelli-Kohn—Nirenberg

[1]).
o Generalized energy inequality.
o The Hausdorff dimension of the set of singular points of a suitable weak solution. Importance
in the localization procedures.
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o Several criteria for the local regularity of weak solutien(i.e. the criteria which guarantee
that a chosen space—time poigi, o) is a regular point of solution). Our list involves the
criteria from [1], [4], [6], [7] and [8]. Basic ideas of proofs of some of the criteria.

o Criteria for the local regularity of weak solution that impose conditions on the pressure,
respectively only on the negative part of pressure, see [5] and [3].

o Regularity criteria that impose conditions only on some components of the velocity.

o Regularity criteria that impose conditions only on some components of the vorticity or the
gradient of velocity.
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Suppose thak is a compact body ifR3, rotating about the:;—axis with the angular velocity
w. Putw = we; wheree; is the unit vector oriented in the direction of the-axis. Denote further
by () the exterior ofi at timet. Put

1 0 0
O() =1 0 coswt sinwt

0 —sinwt coswt

Thenx = (z1,22,23) € Q(t) < x' = O(t)x € Q(0). Thus,x’ denotes the Cartesian
coordinates connected with the rotating body. In order to get a problem in a fixed domain instead
of the time—dependent domdil(¢), many authors use the transformation
ux,t) = oTM)u'(x,t) = 0T (t) u'(O(t)x, t),
p(x,t) = p/(x/,t) = p'(O(t)X7 t).
Providedu satisfies the Navier—Stokes system in donfain), andp is the associated pressure,
functionsu’, p’ satisfy the system of equations
o —vA'Y — (wxX) Vi +wxud +1 -V)d+Vpy = ¢ (1)
Vi.d = 0 2
in the fixed domair(2(0), whereV’, respectivelyA’, denote the operator nabla, respectively the

Laplace operator, with respecté. If function u satisfies the no—slip boundary condition on the
surface of body, i.e. u(x,t) = w x x (for x € 90Q(t)) then functionu’ satisfies the condition

u(xt) = wxx  forx € 99Q(0). (3)

We present fundamental qualitative properties of the problem (1), (2), (3), beginning with the
linearized system and continuing with the nonlinear system.
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We come from the nonlinear system (1), (2) in dom@{0). In order to have a simple notation,
we further omit the primes and we write orflyinstead of2(0).

By analogy with the classical Stokes operator, which plays a fundamental role in the analysis
of the Navier—Stokes equations, now we have to deal with the Stokes—type operator

A%u = IvAu+1l,[(w x x) - Vu — w x u], (4)
respectively with the Oseen-type operator

L¥u = A%u+y0iu (5)
in the function spacd?2 () (the subspace dL?(2), containing the so called solenoidal vector
functions in(2). Here,II,, denotes the orthogonal projectionlof(2) ontoL2 (€2).

We explain the notions of the nullity, deficiency, approximate nullity, approximate deficiency
of alinear operator, Fredholm and semi—Fredholm operator, point spectrum, continuous spectrum,
residual spectrum and the essential spectrum of a linear operator, and give the characterization of
the spectrum of both the operatots and L%

It is remarkable that, in contrast to the spectrum of the classical Stokes opéfatwhich is
the half-line covering the non-positive part of the real axis in the complex plane), the spectrum of
the Stokes—type operatdr (for w # 0) consists of infinitely many half-lines parallel to the real
axis. Similarly, while the spectrum of the classical Oseen opelzi’,tauovers a parabolic region in
the complex plane, the spectrum of operatgr(with w # 0) is a union of infinitely many such
regions.
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