On regularity of weak solutions of the Navier-Stokes equations I

J. Neustupa, Prague

Abstract of the lecture

We assume that Ω is a domain in \mathbb{R}^3 and T>0. We denote $Q_T:=\Omega\times(0,T)$. We deal with the Navier-Stokes initial-boundary value problem

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \Delta \mathbf{v} \qquad \text{in } Q_T, \tag{1}$$

$$\operatorname{div} \mathbf{v} = 0 \qquad \qquad \operatorname{in} Q_T, \qquad (2)$$

$$\mathbf{v} = \mathbf{0} \qquad \qquad \operatorname{on} \partial\Omega \times (0, T), \qquad (3)$$

$$\mathbf{v} = \mathbf{0} \qquad \qquad \text{on } \partial\Omega \times (0, T), \tag{3}$$

$$\mathbf{v} = \mathbf{v}_0 \qquad \qquad \text{in } \Omega \times \{0\}. \tag{4}$$

- The notion of the *Leray–Hopf weak solution* of problem (1)–(4) and the basic information on its existence and related properties (the L^2 -weak continuity, an associated pressure, energy inequality and equality, strong energy inequality).
- Question of uniqueness of weak solutions of problem (1)–(4), known theorems, importance of the energy inequality in studies of uniqueness.
- Question of regularity of a weak solution of the problem (1)–(4) one the so called millennium problems.
- o Leray's proposal for the construction of a singularity and the related negative result of Nečas, Růžička, Šverák [4].

- [1] G. P. Galdi: An Introduction to the Navier–Stokes initial–boundary value problem. In Fundamental Directions in Mathematical Fluid Mechanics, ed. G. P. Galdi, J. Heywood, R. Rannacher, series "Advances in Mathematical Fluid Mechanics". Birkhauser-Verlag, Basel, 2000, 1-98.
- [2] E. Hopf: Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Math. Nachr. 4, 1950, 213-231.
- [3] J. Leray: Sur le mouvements d'un liquide visqueux emplissant l'espace. Acta Mathematica **63**, 1934, 193–248.
- [4] J. Nečas, M. Růžička and V. Šverák: On Leray's self-similar solutions of the Navier-Stokes equations. Acta Mathematica 176, 1996, 283-294.
- [5] H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel-Boston-Berlin 2001.
- [6] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford 1977.

On regularity of weak solutions of the Navier-Stokes equations II

J. Neustupa, Prague

Abstract of the lecture

- Serrin's criterion for the interior spatial regularity of the weak solution \mathbf{v} , some generalizations. Recall that the criterion assumes that $\mathbf{v} \in L^r(t_1, t_2; \mathbf{L}^s(\Omega'))$, where $0 \le t_1 < t_2 \le T$ and $\Omega' \subset \Omega$, for certain exponents r and s satisfying the condition $2/r + 3/s \le 1$.
- What one can say on regularity of the time derivative of \mathbf{v} and the pressure in $\Omega' \times (t_1, t_2)$ under Serrin's conditions? Relation to the used boundary conditions.
- \circ A Serrin-type criterion for the regularity of weak solution v in the whole domain Ω .
- A remark on the two–dimensional case: here, the weak solution automatically belongs to Serrin's regularity class.

- [1] G. P. Galdi: An Introduction to the Navier–Stokes initial–boundary value problem. In *Fundamental Directions in Mathematical Fluid Mechanics*, ed. G. P. Galdi, J. Heywood, R. Rannacher, series "Advances in Mathematical Fluid Mechanics". Birkhauser–Verlag, Basel, 2000, 1–98.
- [2] J. Neustupa, P. Penel: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations. In *Mathematical Fluid Mechanics, Recent Results and Open Questions*, ed. J. Neustupa and P. Penel, Birkhauser, Basel 2001, 237–268.
- [3] J. Serrin: On the interior regularity of weak solutions of the Navier–Stokes equations. *Arch. Rat. Mech. Anal.* **9**, 187–195, 1962.
- [4] Z. Skalák and P. Kučera: Regularity of pressure in the neighbourhood of regular points of weak solution of the Navier–Stokes equations. *Appl. of Math.* **48**, 6, 2003, 573–586.
- [5] H. Sohr: *The Navier–Stokes Equations. An Elementary Functional Analytic Approach.* Birkhäuser Advanced Texts, Basel–Boston–Berlin 2001.

On regularity of weak solutions of the Navier-Stokes equations III

J. Neustupa, Prague

Abstract of the lecture

- o Leray's "Theorème de Structure" on the partial regularity of a weak solution \mathbf{v} , satisfying the strong energy inequality. (The interval (0,T) can be split to the union of a system of open intervals where the solution is "smooth" and a set Γ , whose 1-dimensional Lebesgue measure, or even $\frac{1}{2}$ -dimensional Hausdorff measure, is zero.)
- Several definitions of the notion *regular point* of weak solution v (in the sense of [1], [2], [3], [4] and others), relations between various definitions.
- The notion of the so called *suitable weak solution* (in the sense of Caffarelli–Kohn–Nirenberg [1]).
- o Generalized energy inequality.
- The Hausdorff dimension of the set of singular points of a suitable weak solution. Importance in the localization procedures.

- [1] L. Caffarelli, R. Kohn and L. Nirenberg: Partial regularity of suitable weak solutions of the Navier–Stokes equations. *Comm. on Pure and Appl. Math.* **35**, 1982, 771–831.
- [2] O. A. Ladyzhenskaya and G. A. Seregin: On partial regularity of suitable weak solutions to the three–dimensional Navier–Stokes equations. *J. Math. Fluid Mech.* **1**, 1999, 356–387.
- [3] G. A. Seregin: Local regularity for suitable weak solutions of the Navier-Stokes equations. *Russian Math. Surveys* **62**, 3, 2007, 595-614.
- [4] G. A. Seregin and W. Zajaczkowski: A sufficient conditions of regularity for axially symmetric solutions to the Navier–Stokes equations. *SIAM J. Math. Anal.* **39**, 2007, 2, 669-685.

On regularity of weak solutions of the Navier-Stokes equations IV

J. Neustupa, Prague

Abstract of the lecture

- Several criteria for the local regularity of weak solution \mathbf{v} (i.e. the criteria which guarantee that a chosen space—time point (\mathbf{x}_0, t_0) is a regular point of solution \mathbf{v}). Our list involves the criteria from [1], [4], [6], [7] and [8]. Basic ideas of proofs of some of the criteria.
- Criteria for the local regularity of weak solution v that impose conditions on the pressure, respectively only on the negative part of pressure, see [5] and [3].
- o Regularity criteria that impose conditions only on some components of the velocity.
- Regularity criteria that impose conditions only on some components of the vorticity or the gradient of velocity.

- [1] L. Caffarelli, R. Kohn and L. Nirenberg: Partial regularity of suitable weak solutions of the Navier–Stokes equations. *Comm. on Pure and Appl. Math.* **35**, 1982, 771–831.
- [2] R. Farwig, H. Kozono and H. Sohr: Energy–based regularity criteria for the Navier-Stokes equations. *J. Math. Fluid Mech.* **11**, 3, 2009, 428–442.
- [3] J. Nečas and J. Neustupa: New conditions for local regularity of a suitable weak solution to the Navier–Stokes equations. *J. Math. Fluid Mech.* **4**, 2002, 237–256.
- [4] J. Neustupa: A removable singularity in a weak solution to the Navier–Stokes equations. To appear in *Nonlinearity*.
- [5] G. A. Seregin and V. Šverák: Navier–Stokes equations with lower bounds on the pressure. *Arch. Rat. Mech. Anal.* **163**, 2002, 65–86.
- [6] G. A. Seregin: Local regularity for suitable weak solutions of the Navier-Stokes equations. *Russian Math. Surveys* **62**, 3, 2007, 595-614.
- [7] J. Wolf: A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations. *Advances in Mathematical Fluid Mechanics*, ed. R. Rannacher, A. Sequeira, Springer, Berlin, 2010, 613-630.
- [8] W. Zajaczkowski and G. A. Seregin: Sufficient conditions of local regularity for the Navier–Stokes equations. *J. of Math. Sci.* **143**, 2, 2007, 2869–2874.

Introduction to modelling of flows around rotating bodies I

J. Neustupa, Prague

Abstract of the lecture

Suppose that K is a compact body in \mathbb{R}^3 , rotating about the x_1 -axis with the angular velocity ω . Put $\omega = \omega \mathbf{e}_1$ where \mathbf{e}_1 is the unit vector oriented in the direction of the x_1 -axis. Denote further by $\Omega(t)$ the exterior of K at time t. Put

$$O(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega t & \sin \omega t \\ 0 & -\sin \omega t & \cos \omega t \end{pmatrix}$$

Then $\mathbf{x} \equiv (x_1, x_2, x_3) \in \Omega(t) \iff \mathbf{x}' \equiv O(t)\mathbf{x} \in \Omega(0)$. Thus, \mathbf{x}' denotes the Cartesian coordinates connected with the rotating body. In order to get a problem in a fixed domain instead of the time-dependent domain $\Omega(t)$, many authors use the transformation

$$\mathbf{u}(\mathbf{x},t) = O^{T}(t)\,\mathbf{u}'(\mathbf{x}',t) = O^{T}(t)\,\mathbf{u}'\big(O(t)\mathbf{x},t\big),$$

$$p(\mathbf{x},t) = p'(\mathbf{x}',t) = p'\big(O(t)\mathbf{x},t\big).$$

Provided **u** satisfies the Navier–Stokes system in domain $\Omega(t)$, and p is the associated pressure, functions \mathbf{u}' , p' satisfy the system of equations

$$\partial_t \mathbf{u}' - \nu \Delta' \mathbf{u}' - (\boldsymbol{\omega} \times \mathbf{x}') \cdot \nabla' \mathbf{u}' + \boldsymbol{\omega} \times \mathbf{u}' + (\mathbf{u}' \cdot \nabla') \mathbf{u}' + \nabla' p' = \mathbf{f}'$$
 (1)

$$\nabla' \cdot \mathbf{u}' = 0 \tag{2}$$

in the fixed domain $\Omega(0)$, where ∇' , respectively Δ' , denote the operator nabla, respectively the Laplace operator, with respect to \mathbf{x}' . If function \mathbf{u} satisfies the no–slip boundary condition on the surface of body K, i.e. $\mathbf{u}(\mathbf{x},t) = \boldsymbol{\omega} \times \mathbf{x}$ (for $\mathbf{x} \in \partial \Omega(t)$) then function \mathbf{u}' satisfies the condition

$$\mathbf{u}'(\mathbf{x}',t') = \boldsymbol{\omega} \times \mathbf{x}' \quad \text{for } \mathbf{x}' \in \partial \Omega(0).$$
 (3)

We present fundamental qualitative properties of the problem (1), (2), (3), beginning with the linearized system and continuing with the nonlinear system.

- [1] R. Farwig, An L^p -analysis of viscous fluid flow past a rotating obstacle, *Tohoku Math. J.* 58 (2005), 129–147.
- [2] G. P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle, *J. Elasticity* 71 (2003), 1–32.
- [3] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. *Arch. Rational Mech. Anal.* 150 (1999), 307–348.
- [4] T. Hishida, The Stokes operator with rotating effect in exterior domains. *Analysis* 19 (1999), 51–67.

Introduction to modelling of flows around rotating bodies II

(Spectral analysis of associated linearized operators)

J. Neustupa, Prague

Abstract of the lecture

We come from the nonlinear system (1), (2) in domain $\Omega(0)$. In order to have a simple notation, we further omit the primes and we write only Ω instead of $\Omega(0)$.

By analogy with the classical Stokes operator, which plays a fundamental role in the analysis of the Navier–Stokes equations, now we have to deal with the Stokes–type operator

$$A^{\omega}\mathbf{u} := \Pi_{\sigma}\nu\Delta\mathbf{u} + \Pi_{\sigma}[(\boldsymbol{\omega}\times\mathbf{x})\cdot\nabla\mathbf{u} - \boldsymbol{\omega}\times\mathbf{u}],\tag{4}$$

respectively with the Oseen-type operator

$$L_{\gamma}^{\omega}\mathbf{u} := A^{\omega}\mathbf{u} + \gamma \,\partial_{1}\mathbf{u} \tag{5}$$

in the function space $L^2_{\sigma}(\Omega)$ (the subspace of $\mathbf{L}^2(\Omega)$, containing the so called solenoidal vector functions in Ω). Here, Π_{σ} denotes the orthogonal projection of $\mathbf{L}^2(\Omega)$ onto $\mathbf{L}^2_{\sigma}(\Omega)$.

We explain the notions of the nullity, deficiency, approximate nullity, approximate deficiency of a linear operator, Fredholm and semi–Fredholm operator, point spectrum, continuous spectrum, residual spectrum and the essential spectrum of a linear operator, and give the characterization of the spectrum of both the operators A^{ω} and L^{ω}_{γ} .

It is remarkable that, in contrast to the spectrum of the classical Stokes operator A^0 (which is the half–line covering the non-positive part of the real axis in the complex plane), the spectrum of the Stokes–type operator A^ω (for $\omega \neq 0$) consists of infinitely many half–lines parallel to the real axis. Similarly, while the spectrum of the classical Oseen operator L^0_γ covers a parabolic region in the complex plane, the spectrum of operator L^ω_γ (with $\omega \neq 0$) is a union of infinitely many such regions.

- [1] R. Farwig and J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body, *Manuscripta Mathematica* 122, 2007, 419–437.
- [2] R. Farwig and J. Neustupa, On the spectrum of an Oseen-type operator arising from flow around a rotating body, *Integral Equations and Operator Theory* 62, 2008, 169–189.
- [3] R. Farwig and J. Neustupa: On the spectrum of an Oseen–type operator arising from fluid flow past a rotating body in $L^q_{\sigma}(\Omega)$. *Tohoku Math. J.* 62, 2, 2010, 287–309.
- [4] R. Farwig, Š. Nečasová and J. Neustupa: Spectral analysis of a Stokes–type operator arising from flow around a rotating body. *J. Math. Soc. Japan* 63, 1, 2011, 163–194.