
On regularity of weak solutions of the Navier-Stokes equations I

J. Neustupa, Prague

Abstract of the lecture

We assume thatΩ is a domain inR3 andT > 0. We denoteQT := Ω × (0, T ). We deal with
the Navier–Stokes initial–boundary value problem

∂tv + v · ∇v = −∇p+ ν∆v in QT , (1)

div v = 0 in QT , (2)

v = 0 on∂Ω× (0, T ), (3)

v = v0 in Ω× {0}. (4)

◦ The notion of theLeray–Hopf weak solutionof problem (1)–(4) and the basic information on
its existence and related properties (theL2–weak continuity, an associated pressure, energy
inequality and equality, strong energy inequality).

◦ Question of uniqueness of weak solutions of problem (1)–(4), known theorems, importance of
the energy inequality in studies of uniqueness.

◦ Question of regularity of a weak solution of the problem (1)–(4) – one the the so calledmillen-
nium problems.

◦ Leray’s proposal for the construction of a singularity and the related negative result of Nečas,
Růžička,Šveŕak [4].
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On regularity of weak solutions of the Navier-Stokes equations II

J. Neustupa, Prague

Abstract of the lecture

◦ Serrin’s criterion for the interior spatial regularity of the weak solutionv, some generalizations.
Recall that the criterion assumes thatv ∈ Lr(t1, t2; Ls(Ω′)), where0 ≤ t1 < t2 ≤ T and
Ω′ ⊂ Ω, for certain exponentsr ands satisfying the condition2/r + 3/s ≤ 1.

◦ What one can say on regularity of the time derivative ofv and the pressure inΩ′ × (t1, t2)
under Serrin’s conditions? Relation to the used boundary conditions.

◦ A Serrin–type criterion for the regularity of weak solutionv in the whole domainΩ.

◦ A remark on the two–dimensional case: here, the weak solution automatically belongs to Ser-
rin’s regularity class.
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On regularity of weak solutions of the Navier-Stokes equations III

J. Neustupa, Prague

Abstract of the lecture

◦ Leray’s “Theor̀eme de Structure” on the partial regularity of a weak solutionv, satisfying the
strong energy inequality. (The interval(0, T ) can be split to the union of a system of open
intervals where the solution is “smooth” and a setΓ, whose 1–dimensional Lebesgue measure,
or even1

2–dimensional Hausdorff measure, is zero.)

◦ Several definitions of the notionregular pointof weak solutionv (in the sense of [1], [2], [3],
[4] and others), relations between various definitions.

◦ The notion of the so calledsuitable weak solution(in the sense of Caffarelli–Kohn–Nirenberg
[1]).

◦ Generalized energy inequality.

◦ The Hausdorff dimension of the set of singular points of a suitable weak solution. Importance
in the localization procedures.
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On regularity of weak solutions of the Navier-Stokes equations IV

J. Neustupa, Prague

Abstract of the lecture

◦ Several criteria for the local regularity of weak solutionv (i.e. the criteria which guarantee
that a chosen space–time point(x0, t0) is a regular point of solutionv). Our list involves the
criteria from [1], [4], [6], [7] and [8]. Basic ideas of proofs of some of the criteria.

◦ Criteria for the local regularity of weak solutionv that impose conditions on the pressure,
respectively only on the negative part of pressure, see [5] and [3].

◦ Regularity criteria that impose conditions only on some components of the velocity.

◦ Regularity criteria that impose conditions only on some components of the vorticity or the
gradient of velocity.
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Introduction to modelling of flows around rotating bodies I

J. Neustupa, Prague

Abstract of the lecture

Suppose thatK is a compact body inR3, rotating about thex1–axis with the angular velocity
ω. Putω = ωe1 wheree1 is the unit vector oriented in the direction of thex1–axis. Denote further
by Ω(t) the exterior ofK at timet. Put

O(t) =

 1 0 0
0 cosωt sinωt
0 − sinωt cosωt


Then x ≡ (x1, x2, x3) ∈ Ω(t) ⇐⇒ x′ ≡ O(t)x ∈ Ω(0). Thus, x′ denotes the Cartesian
coordinates connected with the rotating body. In order to get a problem in a fixed domain instead
of the time–dependent domainΩ(t), many authors use the transformation

u(x, t) = OT (t) u′(x′, t) = OT (t) u′
(
O(t)x, t

)
,

p(x, t) = p′(x′, t) = p′
(
O(t)x, t

)
.

Providedu satisfies the Navier–Stokes system in domainΩ(t), andp is the associated pressure,
functionsu′, p′ satisfy the system of equations

∂tu′ − ν∆′u′ − (ω × x′) · ∇′u′ + ω × u′ + (u′ · ∇′)u′ +∇′p′ = f ′ (1)

∇′ · u′ = 0 (2)

in the fixed domainΩ(0), where∇′, respectively∆′, denote the operator nabla, respectively the
Laplace operator, with respect tox′. If function u satisfies the no–slip boundary condition on the
surface of bodyK, i.e. u(x, t) = ω × x (for x ∈ ∂Ω(t)) then functionu′ satisfies the condition

u′(x′, t′) = ω × x′ for x′ ∈ ∂Ω(0). (3)

We present fundamental qualitative properties of the problem (1), (2), (3), beginning with the
linearized system and continuing with the nonlinear system.
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Introduction to modelling of flows around rotating bodies II
(Spectral analysis of associated linearized operators)

J. Neustupa, Prague

Abstract of the lecture

We come from the nonlinear system (1), (2) in domainΩ(0). In order to have a simple notation,
we further omit the primes and we write onlyΩ instead ofΩ(0).

By analogy with the classical Stokes operator, which plays a fundamental role in the analysis
of the Navier–Stokes equations, now we have to deal with the Stokes–type operator

Aωu := Πσν∆u + Πσ[(ω × x) · ∇u− ω × u], (4)

respectively with the Oseen–type operator

Lωγu := Aωu + γ ∂1u (5)

in the function spaceL2
σ(Ω) (the subspace ofL2(Ω), containing the so called solenoidal vector

functions inΩ). Here,Πσ denotes the orthogonal projection ofL2(Ω) ontoL2
σ(Ω).

We explain the notions of the nullity, deficiency, approximate nullity, approximate deficiency
of a linear operator, Fredholm and semi–Fredholm operator, point spectrum, continuous spectrum,
residual spectrum and the essential spectrum of a linear operator, and give the characterization of
the spectrum of both the operatorsAω andLωγ .

It is remarkable that, in contrast to the spectrum of the classical Stokes operatorA0 (which is
the half–line covering the non-positive part of the real axis in the complex plane), the spectrum of
the Stokes–type operatorAω (for ω 6= 0) consists of infinitely many half–lines parallel to the real
axis. Similarly, while the spectrum of the classical Oseen operatorL0

γ covers a parabolic region in
the complex plane, the spectrum of operatorLωγ (with ω 6= 0) is a union of infinitely many such
regions.
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