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Lecture 1

During this lecture we study in a bounded domain Ω ⊂ Rn the stationary
Navier-Stokes system with homogeneous boundary conditions

−ν∆v + (v · ∇)v +∇p = f in Ω,
divv = 0 in Ω,
v = 0 on ∂Ω,

(1)

where ∇ =
(

∂
∂x1
, . . . ∂

∂xn

)
, a · b =

n∑
i=1

aibi, div v = ∇ · v, ∆ = ∇ · ∇ is the

Laplacian, v and p stand for the velocity vector and for the pressure, f is the
density of external forces:

v = (v1, . . . , vn), f = (f1, . . . , fn),

ν > 0 means the constant viscosity of the liquid.

Let H(Ω) be a subspace of solenoidal vector fields belonging to W̊ 1
2 (Ω).

By a weak solution of problem (1) we understand a vector function v ∈ H(Ω)
satisfying the integral identity

ν

∫
Ω

∇v · ∇η dx+

∫
Ω

(v · ∇)v · η dx =

∫
Ω

f · η dx ∀ η ∈ H(Ω), (2)

where

∇v · ∇η =
n∑
i=1

n∑
j=1

∂vi
∂xj

∂ηi
∂xj

.

It will be shown that the integral identity (2) is equivalent to the operator
equation in the space H(Ω)

v = Av (3)

with the compact operator A. In order to apply the Leray–Schauder Fixed
Point Theorem, we will prove that all possible solutions vλ of the equation

vλ = λAvλ, λ ∈ [0, 1], (4)

are uniformly (with respect to λ) bounded. Then from the Leray–Schauder
it follows that equation (3) has at least one solution.
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The solution of the integral identity (2) (or, equivalently, of the oper-
ator equation (3)) in general could be non-unique. However we prove the
uniqueness of this solution for small data.

We also show that there exists a pressure function p ∈ L2(Ω) such that∫
Ω

p(x) dx = 0 and

ν

∫
Ω

∇v · ∇η dx+

∫
Ω

(v · ∇)v · η dx =

∫
Ω

p div η dx

+

∫
Ω

f · η dx ∀ η ∈ W̊ 1
2 (Ω). (5)

Moreover,
v ∈ W 2

2,loc(Ω), p ∈ W 1
2,loc(Ω)

and the pair (v, p) satisfies the Navier–Stokes equations (1) almost every-
where in Ω.

In order to find the pressure function p we would need to study the fol-
lowing auxiliary problem ("divergence problem"):

For a given g ∈ L2(Ω) with
∫
Ω

g(x) dx = 0 to find a function w ∈ W̊ 1
2 (Ω)

satisfying the equation
div w = g (6)

and the inequality
‖∇w‖L2(Ω) ≤ c‖g‖L2(Ω). (7)
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Lecture 2

The stationary Navier-Stokes system with nonhomogeneous boundary con-
ditions 

−ν∆v + (v · ∇)v +∇p = 0 in Ω,
div v = 0 in Ω,
v = a on ∂Ω,

(8)

will be studied in a domain Ω = Ω0 \
N⋃
j=1

Ωj with the multiply connected

boundary. Here Ω̄j ⊂ Ω, Ωj ∩ Ωi = ∅, j 6= i.

The continuity equation div v = 0 implies the necessary compatibility
condition for the solvability of problem (8):∫

∂Ω

a · n dS =
N∑
j=1

∫
Sj

a · n dS =
N∑
j=1

Fj = 0, (9)

where n is a unit vector of the outward (with respect to Ω) normal to ∂Ω,
Sj = ∂Ωj. The compatibility condition (9) means that the net flux of the
fluid over the boundary ∂Ω is zero.

In this lecturer we shall prove the existence of the solution under the
stronger than (9) condition which requires the all fluxes Fj of the boundary
value a to be zero separately across each component Sj of the boundary ∂Ω:

Fj =

∫
Sj

a · n dS = 0, j = 1, 2, . . . , N, (10)

Notice that the condition (10) does not allow the presence of sinks and
sources.
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First we will study the method based on of the Leray–Hopf’s extension
of the boundary value a. If the condition (10) is valid, then there exists a
function b such that

rotb(x)
∣∣
∂Ω

= a(x).

We construct the Leray–Hopf’s cut–off function ζ(x, ε) having the following
properties:

(i) ζ(x, ε) = 1 for x ∈ ∂Ω, ζ(x, ε) = 0 for dist(x, ∂Ω) ≥ δ = δ(ε),

(ii) 0 ≤ ζ(x, ε) ≤ 1,

(iii) |∇ζ(x, ε)| ≤ cε

dist(x, ∂Ω)
with the constant c independent of ε.

The Leray–Hopf’s extension function has the form

B(x, ε) = rot
(
ζ(x, ε)b(x)

)
. (11)

Then
div B(x, ε) = 0, B(x, ε)

∣∣
∂Ω

= a(x).

We look for a week solution of the problem (8) in the form v = u + B,
where u ∈ H(Ω). Then for u we get the integral identity

ν

∫
Ω

∇u · ∇η dx+

∫
Ω

(u · ∇)u · η dx+

∫
Ω

(u · ∇)B · η dx+

∫
Ω

(B · ∇)u · η dx

=

∫
Ω

f · η dx−
∫
Ω

(B · ∇)B · η dx− ν
∫
Ω

∇B · ∇η dx ∀ η ∈ H(Ω). (12)

The integral identity (12) is equivalent to the operator equation

u = Bu
with the compact operator B in the space H(Ω). In order to show that all
possible solutions of the operator equation with the parameter λ are uni-
formly bounded, we prove and apply the following Leray–Hopf’s inequality∣∣∣ ∫

Ω

(u · ∇)B · u dx
∣∣∣ ≤ cε

∫
Ω

|∇u|2 dx ∀u ∈ H(Ω), (13)

where the constant c is independent of ε and u. We get the desired estimate
of the solution by choosing in (13) the parameter ε > 0 sufficiently small.
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Lecture 3
We shall show that the Leray–Hopf’s extension of the boundary data

is not possible, if the condition (10) is violated (the counterexample of
Takashita will be presented), i.e., we prove that if the fluxes Fi of the bound-
ary value a throw the connected components Si of the boundary ∂Ω are
nonzero, then the Leray–Hopf’s inequality (13), in general, is not valid. Thus
in this case it is not possible to apply the same as in the previous lecture
method.

In this lecture we consider the method of getting an a priory estimate by
a contradiction. In order to simplify the proofs, we still assume for a while
that the condition (10) is fulfilled. The main idea of the last method consist
in the following. Consider the integral identity corresponding to the operator
equation with the parameter λ:

ν

∫
Ω

∇uλ · ∇η dx− λ
∫
Ω

(
(uλ + B) · ∇

)
η · uλ dx− λ

∫
Ω

(
uλ · ∇

)
η ·B dx

= λ
(∫

Ω

(
B·∇

)
η·B dx−ν

∫
Ω

∇B·∇η dx+ν

∫
Ω

f ·η dx
)

∀ η ∈ H(Ω). (14)

Here B is an arbitrary divergence free extension of the boundary value a.
Assume that the solutions of (14) are not uniformly bounded in H(Ω)

with respect to λ ∈ [0, 1]. Then there exist sequences {λk}k∈N ⊂ [0, 1] and
{uλk = uk}k∈N ∈ H(Ω) such that

ν

∫
Ω

∇uk · ∇η dx− λk
∫
Ω

(
(uk + B) · ∇

)
η · uk dx− λk

∫
Ω

(
uk · ∇

)
η ·B dx

= λk

(∫
Ω

(
B·∇

)
η ·B dx−ν

∫
Ω

∇B·∇η dx+ν

∫
Ω

f ·η dx
)
∀η ∈ H(Ω), (15)

and
lim
k→∞

λk = λ0 ∈ [0, 1], lim
k→∞

Jk = lim
k→∞
‖∇uk‖L2(Ω) =∞.

First, taking in (15) η = J−2
k uk and passing to a limit we obtain the

equality

ν = λ0

∫
Ω

(
û · ∇

)
û ·B dx, (16)
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where û is a weak limit in H(Ω) of the sequence {J−1
k uk}.

Second, taking in (15) η = J−2
k ξ with arbitrary ξ ∈ H(Ω) we obtain that

û and the corresponding pressure function p̂ satisfy the Euler equations:
λ0

(
û · ∇

)
û +∇p̂ = 0,

div û = 0,

û|∂Ω = 0.

(17)

It follows from (17) that

p̂ |Si = p̂i, i = 1, . . . , N,

where p̂i are constants.
Multiplying (17) by B and integrating by parts yields

λ0

∫
Ω

(
û · ∇

)
û ·B dx =

N∑
i=1

p̂iFi. (18)

If the condition (10) is valid, i.e. Fi = 0, i = 1, . . . , N , then the right-
hand side of (18) is equal to zero and (18) contradicts to (16). Thus, all
possible solutions of (15) are bounded and by the Leray-Schauder Fixed
Point Theorem there exists at least one weak solution of problem (8).

Since by incompressibility of the fluid
N∑
i=1

Fi = 0,

the right-hand side of (18) is zero also in the case when

p̂1 = p̂2 = . . . = p̂N .

However, Ch. Amick has constructed a counterexample showing that, in
general, this is not true.
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Lecture 4
In this lecture we prove the existence of the solution to problem (8) in

a bounded multiply connected domain Ω ∈ Rn assuming that the fluxes
Fi, i = 1, . . . , N , are "sufficiently small". More precisely, we prove that there
exists a number F∗ = F∗(ν) > 0, dependent on the viscosity coefficient ν,
such that for

|Fi| ≤ F∗, i = 1, . . . , N,

the problem (8) admits at least one weak solution. Note that here we do
not assume the norms of the boundary value a and the external force f to
be small. We prove this result using both proposed in the previous lectures
approachers, i.e., by the special construction of the extension B of the bound-
ary value a, and by getting the a priory estimate by a contradiction.

Next, we consider problem (8) in a plane domain Ω with two components
of the boundary S1 and S2. Assuming that a = F∇u0 +α, where F ∈ R, u0

is a harmonic function, and α satisfies condition (10) (i.e., fluxes of α over
all Si are equal to zero), we prove that there is a countable subset N ⊂ R
such that if F 6∈ N and α is small (in a suitable norm), then the problem
(8) admits at least one weak solution. Moreover, if Ω ⊂ R2 is an annulus and
u0 = log |x|, then N = ∅.

In the last part of the lecture we study the problem (8) in a two dimen-
sional symmetric bounded domain, i.e., Ω is a bounded domain in R2 with
multiply connected Lipschitz boundary ∂Ω consisting of N disjoint compo-
nents Sj: ∂Ω = S1 ∪ . . . ∪ SN and Si ∩ Sj = ∅, i 6= j. Suppose that Ω is
symmetric with respect to x1–axis:

(x1, x2) ∈ Ω⇔ (x1,−x2) ∈ Ω,

and assume that all components Sj of the boundary ∂Ω intersect this axis.
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We say that the vector function u(x1, x2) is symmetric, if u1 is an even
function of x2 and u2 is odd function of x2 and u2:

u1(x1, x2) = u1(x1,−x2), u2(x1, x2) = −u2(x1,−x2).

Assuming that the boundary value a is symmetric we prove the existence
of at least one weak solution of problem (8). Note that in the symmetric case
we do not assume the fluxes Fi to be zero or "small". The fluxes Fi have to
satisfy only the necessary compatibility condition (9). We prove this result
by getting a priory estimate by a contradiction and we get this contradiction
showing that in the symmetric case for the pressure p̂(x) in Euler equations
(17) holds the relations

p̂1 = p̂2 = . . . = p̂N = const,

where p̂i = p̂(x)|Si , i = 1, . . . , N .
Finally, we show that in the symmetric case also the Leray–Hopf’s exten-

sion of the boundary value a could be constructed.
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Lecture 5

In this lecture we study problem (8) in a plane domain

Ω = Ω1 \ Ω2, Ω2 ⊂ Ω1,

where Ω1 and Ω2 are bounded simply connected domains of R2 with Lipschitz
boundaries ∂Ω1 = S1, ∂Ω2 = S2. Without loss of generality we may assume
that Ω2 ⊃ {x ∈ R2 : |x| < 1}.

Since Ω has only two components of the boundary, condition (9) may be
rewritten in the form

F =

∫
S2

a · n dS = −
∫
S1

a · n dS

(n is an outward normal with respect to the domain Ω). We prove the solv-
ability of problem (8) without any restriction on the value of |F | provided
that F > 0. Since it is known (was proved in the previous lecture) that
problem (8) is solvable for sufficiently small |F |, we conclude that the solu-
tion exists if F ∈ [−F∗,∞), where F∗ is some positive number. Note that
this recent result is the first result on Leray’s problem which does not re-
quire smallness of the net flux or symmetry conditions on the domain and
boundary value. The proposed here method works only for F > 0. We do
not have neither physical nor mathematical arguments for the existence or
nonexistence of the solution to (8) in the case F < 0 with large |F |.

The proof of the existence theorem is based on a priory estimate which
we obtain using the reductio ad absurdum argument which was described in
previous lectures. The essentially new part in this argument is the use of
the weak one-side maximum principle for the total head pressure (Bernoulli
function) corresponding to weak solutions of the Euler equations and a repre-
sentation of the total-head pressure in the divergence form. The proof of the
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above maximum principle is based on the Bernoulli Law for a weak solution
to Euler equations.

Let (û, p̂) ∈ W 1
2 (Ω)×W 1

s (Ω), s ∈ [1, 2), be a solution of the Euler system{ (
û · ∇

)
û +∇p̂ = 0,

div û = 0

in a bounded domain Ω ⊂ R2 with Lipschitz boundary ( (û, p̂) satisfies the
Euler system for almost all x ∈ Ω). Assume that∫

Si

û · ndS = 0, i = 1, 2, . . . , N.

Then there exists a stream function ψ ∈ W 2
2 (Ω) such that ∇ψ = (−û2, û1)

(note that by Sobolev Embedding Theorem ψ is continuous in Ω) . Denote

by Φ = p̂+
|û|2

2
the total head pressure corresponding to the solution (û, p̂).

Obviously, Φ ∈ W 1
s (Ω) for all s ∈ [1, 2). By direct calculations one easily

gets the identity

∇Φ ≡
(∂û2

∂x1

− ∂û1

∂x2

)(
û2,−û1

)
= (∆ψ)∇ψ. (19)

If all functions are smooth, then from (19) the classical Bernoulli law fol-
lows immediately:

The total head pressure Φ(x) is constant along any streamline of the flow.

In the general case the following assertion holds.
THEOREM 1. Let Ω ⊂ R2 be a bounded multiply connected domain

with Lipschitz boundary ∂Ω =
N⋃
i=1

Si. Assume that û ∈ W 1
2 (Ω) and p̂ ∈

W 1
s (Ω), s ∈ [1, 2), satisfy Euler equations for almost all x ∈ Ω and∫

Si

û · ndS = 0, i = 1, . . . , N.

Then for any connected set K ⊂ Ω such that

ψ
∣∣
K

= const,

11



there exists a constant C = C(K) such that

Φ(x) = C for H1-almost all x ∈ K.

Here H1 is the one dimensional Hausdorff measure.
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Lecture 6

In this lecture the detailed proof of the Bernoulli law for a weak solution to
the Euler equations will be presented, i.e., we prove the following theorem:

THEOREM 2. Let Ω ⊂ R2 be a bounded multiply connected domain

with Lipschitz boundary ∂Ω =
N⋃
i=1

Si. Assume that û ∈ W 1
2 (Ω) and p̂ ∈

W 1
s (Ω), s ∈ [1, 2), satisfy Euler equations for almost all x ∈ Ω and∫

Si

û · ndS = 0, i = 1, . . . , N.

Then for any connected set K ⊂ Ω such that

ψ
∣∣
K

= const,

there exists a constant C = C(K) such that

Φ(x) = C for H1-almost all x ∈ K.

Here we denote by H1 the one-dimensional Hausdorff measure, i.e.,

H1(F ) = lim
t→0+

H1
t (F ),

where H1
t (F ) = inf{

∞∑
i=1

diamFi : diamFi ≤ t, F ⊂
∞⋃
i=1

Fi}.

The proof of the theorem is based on properties of functions from the
Sobolev space W 2

1 and on Morse-Sard and Luzin N-properties of Sobolev
functions from W 2

1 . For example, we shall use the following

LEMMA. (J. R. Dorronsoro) Let ψ ∈ W 2
1 (R2). Then there exists a set

Aψ such that H1(Aψ) = 0, and for all x ∈ R2 \ Aψ the function ψ is dif-
ferentiable (in the classical sense) at the point x, furthermore, the classical
derivative coincides with ∇ψ(x).
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The results concerning Morse-Sard and Luzin N-properties were obtained
recently by J. Bourgain, M. Korobkov and J. Kristensen:

THEOREM 3. Let Ω ⊂ R2 be a bounded domain with Lipschitz bound-
ary and ψ ∈ W 2

1 (Ω). Then
(i) for every ε > 0 there exists δ > 0 such that for any set U ⊂ Ω with

H1
∞(U) < δ the inequality H1(ψ(U)) < ε holds;
(ii) for every ε > 0 there exists an open set V ⊂ R and a function

g ∈ C1(R2) such that H1(V ) < ε, and for each x ∈ Ω if ψ(x) /∈ V then
x /∈ Aψ, the function ψ is differentiable at the point x, and ψ(x) = g(x),
∇ψ(x) = ∇g(x) 6= 0.

THEOREM 4. Suppose Ω ⊂ R2 is a bounded domain with Lipschitz
boundary and ψ ∈ W 2,1(Ω). Then for H1–almost all y ∈ ψ(Ω) ⊂ R the preim-
age ψ−1(y) is a finite disjoint family of C1–curves Sj, j = 1, 2, . . . , N(y).
Each Sj is either a cycle in Ω (i.e., Sj ⊂ Ω is homeomorphic to the unit
circle S1) or it is a simple arc with endpoints on ∂Ω (in this case Sj is
transversal to ∂Ω). Moreover, the tangent vector to each Sj is an absolutely
continuous function.
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Lecture 7
In this lecture the detailed proof of the one-side maximum principle for the
total head pressure (Bernoulli function) corresponding to a weak solution of
the Euler equations will be presented.

Let Ω be a bounded domain with Lipschitz boundary. We say that the
function f ∈ W 1

s (Ω) satisfies a one-side maximum principle locally in Ω, if

ess sup
x∈Ω′

f(x) ≤ ess sup
x∈∂Ω′

f(x) (20)

holds for any strictly interior subdomain Ω′ (Ω ′ ⊂ Ω) with the boundary ∂Ω′

not containing singleton connected components. Here negligible sets are the
sets of 2–dimensional Lebesgue measure zero in the left esssup, and the sets
of 1–dimensional Hausdorff measure zero in the right esssup.)

If (20) holds for any Ω′ ⊂ Ω (not necessary strictly interior) with the
boundary ∂Ω′ not containing singleton connected components, then we say
that f ∈ W 1

s (Ω) satisfies a one-side maximum principle in Ω (in particular,
we can take Ω′ = Ω in (20).

We shall prove the following
THEOREM 5. Let Ω ⊂ R2 be a bounded multiply connected domain

with Lipschitz boundary ∂Ω =
N⋃
i=1

Si. Let û ∈ W 1
2 (Ω) and p̂ ∈ W 1

s (Ω), s ∈

[1, 2), satisfy Euler equations{ (
û · ∇

)
û +∇p̂ = 0,

div û = 0

for almost all x ∈ Ω and
∫
Si

û · ndS = 0, i = 1, . . . , N . Assume that there

exists a sequence of functions {Φµ} such that Φµ ∈ W 1
s,loc(Ω) and Φµ ⇀ Φ in

the space W 1
s,loc(Ω) for all s ∈ [1, 2). If all Φµ satisfy the one–side maximum

principle locally in Ω, then Φ satisfies the one–side maximum principle in Ω.

The following two lemmas play an essential role in the proof of Theorem
5.

LEMMA A. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary
and û, p satisfy the conditions of Theorem 5. Assume that Ki ⊂ Ω is a
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sequence of connected compact sets such that Ki ≥ δ > 0 and ψ|Ki ≡ ci =
const. Suppose there exists a sequence xi ∈ Ki such that xi → x0 ∈ K0,
where K0 ⊂ Ω is a connected compact set with ψ|K0 = const. Then for any
yi ∈ Ki \ Aû and for any y0 ∈ K0 \ Aw the equality

lim
i→∞

Φ(yi) = Φ(y0)

holds.

LEMMA B. Let Ω ⊂ R2 be a bounded multiply connected domain with
Lipschitz boundary. Let û ∈ W 1

2 (Ω) and p ∈ W 1
s (Ω) satisfy Euler equations

for almost all x ∈ Ω and
∫
Si

û·ndS = 0, i = 1, . . . , N . Assume that there exists

a sequence of functions {Φµ} such that Φµ ∈ W 1
s,(Ω) and Φµ ⇀ Φ inW 1

s,loc(Ω)
for all s ∈ [1, 2). Then for any subdomain Ω′ ⊂ Ω with X = XΩ′ 6= ∅ the
functions Φµ|K are continuous on almost all admissible cycles K and the
sequence {Φµ|K} converges to Φ|K uniformly:

Φµ|K ⇒ Φ|K .

In particular, it follows from Theorem 5 that if û
∣∣
∂Ω

= 0 (in the sense of
traces), then

ess sup
x∈Ω

Φ(x) ≤ ess sup
x∈∂Ω

Φ(x) = max{p̂1, p̂2, . . . , p̂N},

where p̂(x)|Si = p̂i = const.

Note that some version of a local weak one–side maximum principle was
proved by Ch. Amick. However, his result was not enough for our purposes.
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Lecture 8
The nonhomogeneous boundary value problem for the steady Navier–Stokes
equations will be studied in a two–dimensional exterior domain Ω. It is as-
sumed that the domain Ω and the boundary value a are symmetric with
respect to the x1-axis. The existence of a solution to this problem will be
proved for arbitrary values of the fluxes Fi of the boundary value a.

Let Ω ⊂ R2 be an exterior domain

Ω = R2 \
N⋃
j=1

Ωj, N ≥ 1,

where Ωj are bounded domains with Lipschitz boundaries Sj,

Ωj ∩ Ωj = ∅, j 6= i.

Suppose that Ω is symmetric with respect to x1–axis, i.e.,

(x1, x2) ∈ Ω⇔ (x1,−x2) ∈ Ω,

and suppose that all domains Ωj intersect this axis.
We say that the vector function u(x1, x2) is symmetric, if u1 is an even

function of x2 and u2 is odd function of x2 and u2:

u1(x1, x2) = u1(x1,−x2), u2(x1, x2) = −u2(x1,−x2).

Consider in Ω the boundary value problem for the steady–state plane
Navier–Stokes equations

−ν∆v + (v · ∇)v +∇p = f in Ω,
divv = 0 in Ω,

v = a on ∂Ω,

where ∫
∂Ω

a(x) · n(x) dS = F 6= 0.

Here n is the outward (with respect to Ω) unit normal to ∂Ω. Notice that∫
∂Ω

a(x) · n(x) dS =
M∑
j=1

∫
Sj

a(x) · n(x) dS =
M∑
j=1

Fj
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and that we do not assume that the fluxes Fj or the total flux F are small.
We shall prove the existence of at least one weak symmetric solution to

the above problem. This solution has finite Dirichlet integral
∫
Ω

|∇v|2dx <∞.

It is known that v tends to some constant at infinity

lim
|x|→∞

v = v∞ = const.

In general, we cannot prescribe this constant. However, we shall prove that
in the case of domains and boundary values that are symmetric with respect
to two coordinate axis the solution tend at infinity to zero:

lim
|x|→∞

v = 0.

The weak solution v of the problem in the exterior domain will be found
as a limit of a sequence of solutions vR in bounded domains ΩR = Ω ∩ {x :
|x| < R}. In order to prove a uniform with respect to R a priori estimate of
solutions vR, we construct a special extension B(x, ε) of the boundary value
a which satisfies the Leray–Hopf’s inequality. The essential role in proving
the a priory estimate plays also the following new inequality:

LEMMA C. Suppose that v|∂Ω = 0 and
∫
Ω

|∇v|2dx < ∞. Let κ > 0,

α ∈ (1/2, 1). Then the inequality

∫
R\(−a, a)

κ|x1|α∫
0

|v(x1, x2)|2

|x|2
dx1dx2 ≤ c

∫
Ω

|∇v(x)|2dx.

holds. Here a is such that

N⋃
j=1

Ωj ⊂ {x : |x| < a}.
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Lecture 9
In this lecture we discuss the generalizations of results obtained in the two-
dimensional case to the three-dimensional bounded axially symmetric do-
mains.

Let Ω = Ω0\
⋃N
j=1 Ωj be a bounded domain in R3 with multiply connected

Lipschitz boundary ∂Ω consisting of N + 1 disjoint components ∂Ωj = Sj:
∂Ω = S0 ∪ . . . ∪ SN , Si ∩ Sj = ∅, i 6= j. Consider in Ω the stationary
Navier–Stokes system with nonhomogeneous boundary conditions −ν∆v +

(
v · ∇

)
v +∇p = 0 in Ω,
div v = 0 in Ω,

v = a on ∂Ω,

where ∫
∂Ω

a · n dS =
N∑
j=0

∫
Sj

a · n dS =
N∑
j=0

Fi = 0.

We shall study the problem in the axial symmetric case. Let Ox1 , Ox2 , Ox3

be coordinate axis in R3, (θ, r, z) be cylindrical coordinates and vθ, vr, vz be
the projections of the vector v on the axes θ, r, z. A vector-valued function
h = (hθ, hr, hz) is called axially symmetric if hθ, hr and hz do not depend
on θ, and h = (hθ, hr, hz) is called axially symmetric without rotation if hθ = 0
while hr and hz do not depend on θ. We will use the following symmetry
assumptions.

(SO) Ω ⊂ R3 is a bounded domain with Lipschitz boundary and Ox3 is
the axis of symmetry of the domain Ω.

(AS) The assumptions (SO) are fulfilled and the boundary value a ∈
W

1/2
2 (∂Ω) is axially symmetric.
(ASwR) The assumptions (SO) are fulfilled and the boundary value a ∈

W 1/2,2(∂Ω) is axially symmetric without rotation.

Assume that

Sj ∩Ox3 6= ∅, j = 0, . . . ,M, Sj ∩Ox3 = ∅, j = M + 1, . . . , N.

We will prove the existence theorem for the solution if one of the following
two additional conditions is fulfilled:

M = N − 1, FN ≥ 0, (A)
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or
|Fj| < δ, j = M + 1, . . . , N, (A)

where δ is sufficiently small. In particular, (B) includes the case N = M , i.e,
when each component of the boundary intersects the axis of symmetry. In
both cases (A) and (A) the fluxes Fj, j = 0, 1, . . . ,M, are arbitrary.

The main result reads as follows.

THEOREM 6. Let the conditions (AS) be fulfilled. Suppose that fluxes
Fj satisfy the necessary solvability condition and also that one of the condi-
tions (A) or (B) holds. Then the Navier–Stokes problem admits at least one
weak axially symmetric solution.

If, in addition, the conditions (ASwR) are fulfilled, then there exists at
least one weak axially symmetric solution without rotation.

(a) M=N=2

3
x

0
G

1
G

2
G

(b) M=2, N=3

3
x

0
G

1
G

2
G

3
G

(c) M=1, N=3

3
x

0
G

1
G

2
G

3
G

Figure 1: Domain Ω
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Lecture 10
In the last lecture we consider the stationary Navier–Stokes system with

nonhomogeneous boundary conditions in a class of domains Ω having "para-
boloidal" outlets to infinity.

We assume that the boundary ∂Ω is multiply connected and consists
of M infinite connected components Sm which form the outer boundary

S =
M⋃
m=1

Sm, and I compact connected components Γi forming the inner

boundary Γ =
I⋃
i=1

Γi. Concerning the boundary value a we assume that it

has compact support and we suppose that the fluxes F(inn)
i of a over the con-

nected components Γi of the inner boundary are sufficiently small. We do
not have any restrictions on fluxes F(out)

m of a over the components Sm of the
infinite outer boundary. Under these conditions we prove the existence of at
least one weak solution of the Navier–Stokes problem which has prescribed
fluxes Fj over the cross-sections of outlets to infinity. Of course the necessary
compatibility condition

I∑
i=1

F(inn)
i +

M∑
m=1

F(out)
m +

J∑
j=1

Fj = 0

should be valid (i.e., the total flux should be equal to zero).
The solution can have finite or infinite Dirichlet integral depending on

geometrical properties of the outlets (the solution has finite Dirichlet integral,
if the outletsDj, j = 1, . . . , J, are sufficiently "wide"). We give a constructive
proof of the existence of the solution based on special construction of the
extension A of the boundary value a into the domain Ω. This extension is
constructed as a sum

A = B(inn) +
M∑
m=1

B
(out)
m + B(flux),

where B(inn) extends the boundary value a from the inner boundary Γ,
B

(out)
m extend a from the connected component Sm of the outer boundary,

and B(flux) has zero boundary value and removes the fluxes Fj. The vector
fieldsB(out)

m andB(flux) are constructed to satisfy the Leray–Hopf’s inequality
which allows to obtain a priori estimates of the solution for arbitrary large
fluxes F(out)

m and Fj.
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Figure 2: Domain Ω

We mention that, in general, the Leray–Hopf’s inequality cannot be true
for the vector field B(inn) (because of the counterexample of Takashita).
Therefore, we have to suppose that the fluxes Finni of a over the compact
components of the inner boundary are "sufficiently small". After the exten-
sion A with above properties is constructed, the proof of the existence of a
weak solution of the Navier–Stokes problem is just the same as in the case
of homogeneous boundary data.
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