A+ CATEGORY SCIENTIFIC UNIT

Note on the mean value of the Erdős–Hooley Delta-function

Régis de la Bretèche, Gérald Tenenbaum Acta Arithmetica MSC: Primary 11N37; Secondary 11K65 DOI: 10.4064/aa250107-13-2 Published online: 2 July 2025

Abstract

For integer $n\geqslant 1$ and real $u$, let $\varDelta (n,u):=|\{d:d\,|\,n,\, \mathrm e ^u \lt d\leqslant \mathrm e ^{u+1}\}|$. The Erdős–Hooley Delta-function is then defined by $\varDelta (n):=\max_{u\in \mathbb R}\varDelta (n,u).$ We improve a recent upper bound for the mean value of this function by showing that, for large $x$, we have $$\sum _{n\leqslant x}\varDelta (n)\ll x(\log _2x)^{5/2}.$$

Authors

  • Régis de la BretècheUniversité Paris Cité, Sorbonne Université, CNRS
    Institut Universitaire de France
    Institut de Mathématiques de Jussieu – Paris Rive Gauche
    75013 Paris, France
    e-mail
  • Gérald TenenbaumInstitut Élie Cartan
    Université de Lorraine
    54506 Vandœuvre-lès-Nancy, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image