A+ CATEGORY SCIENTIFIC UNIT

Courbes de Fermat et principe de Hasse

Alain Kraus Acta Arithmetica MSC: Primary 11D41 DOI: 10.4064/aa250111-4-8 Published online: 17 November 2025

Abstract

Let $p\geq 3$ be a prime number. A Fermat curve over $\mathbb {Q}$ of exponent $p$ is defined by an equation of the form $ax^p+by^p+cz^p=0$, where $a$, $b$, $c$ are non-zero rational numbers. We prove in this article that there exist infinitely many Fermat curves defined over $\mathbb {Q} $, of exponent $p$, pairwise non $\mathbb {Q}$-isomorphic, contradicting the Hasse principle.

Authors

  • Alain KrausSorbonne Université
    Université Paris Cité
    CNRS, IMJ-PRG
    75005 Paris, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image