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Abstract

We classify Hamiltonians in a neighborhood of a crossing between their eigen-
values from a viewpoint of differential topology [1, 2] and construct a normal form
for each class. We provide several examples that appear in quantum chemistry and
solid-state physics.

1 Settings

Here, we provide the most generic settings but we can also take symmetries of systems
into account. Let M,, (C) be a set of m-by-m complex matrices (m € N),

Hermo (m) = {X € M, (C) ‘XT = X, TraceX = o} (1)
be a set of m-by-m traceless Hermite matrices,
SU (m) = {X € My, (C) ’XTX = XX =1, det X = 1} 2)

be a set of m-by-m special unitary matrices, where X is the Hermite conjugate of the
matrix X, I, is the m-by-m unit matrix, TraceX and det X are the trace and the
determinant of the matrix X, respectively. Let H, H' : (R",0) — (Hermg (m),O,,) be
C* map germs where n € N and O,, is the m-by-m zero matrix. We say that H and
H' are SU (m)-equivalent if there exist a map germ U : (R™,0) — (SU (m),U (0)) and a
diffeomorphism germ s : (R™,0) — (R"™,0) such that H (s (x)) = U (x) H' (x) UT (x) for
x € R™. In what follows, we consider map germs of class C'™ unless otherwise stated.

2 Results

Here, we classify map germ H : (R",0) — (Hermg (m), O,,) with respect to SU (m)-
equivalence for n = 3 and m = 2. For example, this case appears in a classification of
Hamiltonians in a neighborhood of a crossing between two bands in a bulk of material.
In this example, two-by-two Hamiltonians are defined on a three-dimensional Bloch



wavenumber spaces such as H (k) = 3 (k) o1+~ (k) o02+7 (k) o3 where 3,7,6 : (R,0) —
(R,0) are map germs, k = (ky, k2, k3) € R3 is a Bloch wavenumber, and
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are three Pauli matrices. We write such a Hamiltonian as H (k) = (5 (k),~v (k),v (k))-o
in what follows, where o = (01, 02, 03).

In this classification, we classify Hamiltonians starting from generic cases to less
generic cases. In order to quantify how generic each Hamiltonian is, we define the codi-
mension of each Hamiltonian as the minimum number of parameters that are necessary
to construct a universal unfolding of the Hamiltonian (For a precise definition of codi-
mension, see [1].). We start the classification from the Hamiltonian of codimension 0
up to that of codimension 7. In principle, it is possible to continue the classification up
to an arbitrary codimension but it becomes more and more difficult to do that as the
codimension increases. Therefore, we restrict ourselves to the cases of codimensions less
than 8. As a result of the classification, we obtain the following list of Hamiltonians
that represent the classes. If the codimension of a Hamiltonian is less than 8, the Hamil-

H (k) ranges codimension
(k1,ko,k3) - o 0
(mw%@) 0=23,---,8|0-1

(1, k3, k3 + rk2) r € [0,00) 5

(/{71, koks, & 3 (]4}2 k‘Q)) o re (O, 1) )
(k1,k3 4+ k3,7 (k3 +k3)) -0 | r € (0,00) 7

(k?l, koks, T (ki2 + k‘3)) o re (O, OO) 7

H, (k) r € (0,00) 7

Table 1: List of Hamiltonian in each class of codimension less than 8 where H, (k) =
(k. kaks + Tk (2 — k2) , 1 (K2 — £2) (1 + rk3)) - o

tonian is SU (2)-equivalent to one of the Hamiltonians listed in Table 1. The class of
Hamiltonians of codimension 0 in Table 1 corresponds to that of Hamiltonians having
a Weyl point at the origin, which is persistent against an arbitrary smooth and small
perturbation [3] and is recently observed experimentally [4, 5]. The other classes have
codimensions larger than 0 and can appear on verges of quantum phase transitions. To
control material properties, not only the class of codimension 0 but also ones of higher
codimensions are essential and Table 1 provides a complete list of the classes up to the
codimension 7.
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