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How black holes are defined

Intuitively:
Regions on the spacetime where all (future) causal curves are trapped

So, does it depend
only on causal structures?

Of course not...
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Black Hole: Classical Definition

Consider (M,g) ↪→ (M̃, g̃) a conformal embedding with
conformal factor Ω.

Ô Define the notion of J +
c on the

conformal boundary.

Ô Define the visible area as
J−(J +

c ).

Ô The black hole is defined as
the complementary of pre-
vious set.

J +
c
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the study of black holes

However, not all models admit a conformal boundary
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Original idea

Due to Geroch, Kronheimer and Penrose (’72) for strongly causal and
time-oriented spacetimes:

Ô One ideal point for each inex-
tensible future timelike curve.

Ô Two curves attach the same
point if they have the same
past.

Ô Previous ideal points genera-
te the future causal boundary.
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Original Idea

Ô The same follows for the past causal boundary.

Ô Join together both boundaries accordingly...

But how?



Causal Boundary

Main idea: Represent the points on the completion M as (P,F )

P and F are indecomposable past and future sets resp.

Proper Indecomposable sets
if they are the past or future of a

point in M

P = I−(p) or F = I+(p)

Terminal Indecomposable sets
if they are the past or future of a

inextendible curve in M.

P = I−(γ) or F = I+(η).
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Causal Boundary

P and F have to be S-related, P ∼S F which means{
P is a maximal IP in ↓ F := I− ({q ∈ V : q � p,∀p ∈ F})
F is a maximal IF in ↑ P := I+ ({p ∈ V : q � p,∀q ∈ P})

(P ∼S ∅ if there is no S-related F ...)

Points p ∈ M are identified with (I−(p), I+(p)).

The boundary points (P,F ) ∈ ∂M are pairs of terminal sets
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(P1, ∅)

(P2, ∅)
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Causal Boundary

On previous construction is considered both a chronological relation
and a topology which ensures a set of good properties:

Properties
The c-completion M satisfies:

(a) The causal structure and topology on M are preserved.

(b) The future and past of sets in M are open.

(c) Any timelike curve γ ⊂ M has an endpoint in M.

(d) It coincides with the conformal boundary under some mild
hypothesis.
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The causal boundary is constructed by means of timelike curves.

There are some particularities to consider
when causal curves are involved.

P

F

But we can avoid this problem assuming
that the lightlike curves satisfy that ↑ γ =↑ I−(γ)...

...which follows if, for instance, (M,g) is
causally continuous
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Null Infinity

Definition
The future null infinity of M, denoted by J +, is formed by pairs
(P,F ) ∈ ∂M such that:

(I) ∃ a future complete and future regular null ray η : [0,∞)→ M
with (P,F ) as endpoint of η.

(II) every future-inextendible null geodesic with endpoint (P,F ) is
future complete.

Ô (i) ensures that (P,F ) is “far away”.

Ô Also future regular ensures a well behaviour between future and
past sets.

Ô (ii) ensures that “there is no shortcut to infinity”.
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Null Infinity, Visible points and Black Holes

Points that reach J +

are out of any black hole.

Define the visible points as
the points in V∞ = J−(J +).

Finally, we define the black hole
as all “non-visible” points.

B+ = M \ V∞

And the horizon as H+ = ∂B+
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Properties

The null infinity, visible points and black hole of a spacetime M
satisfies:

(a) I+(B+) ⊂ Int(B+), so Int(B+) is a future set.

(b) M = Int(B+) ∪ H+ ∪ I−(V∞).

Ô H+ is an achronal and C0 hypersurface.

(c) Any point in H+ ∩ J−(V∞) is connected with J + with a null
ray.
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Some results on the non-existence of black holes

Proposition (Costa e Silva, Flores, -)

If M is globally hyperbolic, future null complete and with no
compact Cauchy hypersurface, then V∞ 6= ∅ but B+ = ∅.

Sketch of the proof:

Ô For any point p, recall that ∂I+(p) is non-compact.

Ô Then, under the hypothesis there exists an inextendible
future-directed null geodesic ray η.

Ô Such a curve has an endpoint in J +, and so, p ∈ V∞.
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Some results on the non-existence of black holes

Theorem (Costa e Silva, Flores, -)

Suppose that Mn+1 is a strongly causal spacetime with n ≥ 2
satisfying:
(a) M is timelike and null geodesically complete,
(b) M satisfies the timelike convergence condition,

Ric(v , v) ≥ 0 for any timelike v ∈ TM,
(c) J + 6= ∅.
(d) M is strongly properly causal.

Then B+ = ∅.



Some results on the non-existence of black holes

Sketch of the proof:

Ô Assume by contradiction that B+ 6= ∅.

Ô From the hypothesis, p should be a future trapped set.

Ô Then, it should exist a causal line intersecting
E+(p) = J+(p) \ I+(p).

Ô Such a curve has to be, in fact, timelike as E+(p) is
contained in B+.
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Some results on the non-existence of black holes

Ô Then, the Lorentzian splitting theorem ensures that M
should be isometric to a product spacetime R× S, with
complete Riemannian base.

Ô Hence M is necessarily globally hyperbolic and, from
previous result, S should be compact.

Ô But then, there is no achronal null geodesic, and so
J + = ∅, a contradiction.
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Further results

In order to extend some of the classical results for black holes
on this context, we require some regularity conditions

Prototype result
Assume that M is a Lorentz manifold with a regular null infinity
J +, and let C be an achronal compact set. If C is not fully
covered by a black hole, then there exists a future null C-ray
with endpoint in J +.



Further results

In this sense, we need to consider two conditions:

Ô The null infinity J + is ample if for any compact set C ⊂ M,
and for any connected component J +

0 of J +,

J +
0 ∩ (M \ Ĩ+(C)) is a non-empty open set, where

Ĩ+(C) := {(P,F ) ∈ M : I−(x) ⊂ P for some x ∈ C}.

Remarks

◦ Ĩ+(C) is closed if M̂ is Hausdorff.
◦ It follows for some classical cases with a null conformal

boundary with past-complete null geodesic generators.
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Ĩ+(C) := {(P,F ) ∈ M : I−(x) ⊂ P for some x ∈ C}.

Remarks
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Further results

Ô The null infinity J + is past-complete if given (P,F ) ∈ J +,
any (P ′,F ′) ∈ ∂M with P ′ = I−(η), being η a future-directed
inextendible null geodesic generator of ∂P, also belong to
J +.

Definition
We will say that J + is regular if it is both ample and past
complete.
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Further results

Theorem (Costa e Silva, Flores, -)

Assume that M is a Lorentz manifold with a regular null infinity
J +, and let C be an achronal compact set. If C is not fully
covered by a black hole, then there exists a future null C-ray
with endpoint in J +.

Corollary
Assume that J + is regular and that the null convergence
condition holds in (M,g). If S ⊂ M is a closed trapped surface,
then S ⊂ B+.
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Generalized plane waves

Consider a Generalized Plane Wave

M = M0 + R2, g ≡ g0 + 2dudv + H(x ,u)du2

(M0,g0) Riemannian, H : M0 × R→ R

Remarks
? Its causal boundary is known.
? Under the assumption that the null rays γx ,u(s) = (x ,−s,u)

are future-regular (↑ γ =↑ I−(γ)), we compute (at least,
partially) J +.
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Generalized plane waves

Theorem (Costa e Silva, Flores, -)

If M is a geodesically complete generalized plane wave whose
null rays γx ,u are future-regular, then it does not contain black
holes.

This is a formalization of a previous result given first by
Hubeny-Randamani, and later generalized by Flores-Sanchez.

Corollary
If M is a geodesically complete causally continuous generalized
plane wave, then it does not contain black holes.
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