Stationary Horizons of Type D

[1,2] Denis Dobkowski-Ryłko, **Jerzy Lewandowski,** Tomasz Pawłowski 2018

[3] JL, Adam Szereszewski 2018

[4] DDR, Wojciech Kamiński, JL, AS 2018

[0] **JL,** TP 2002

Local approach to black holes

Black holes in equilibrium:

non-expanding and shear-free null surfaces in 4d spacetime - horizons.

A. Ashtekar, C. Beetle, JL:

Mechanics of Rotating Isolated Horizons 2001

Geometry of Generic Isolated Horizons 2002

JL, Tomasz Pawłowski:

Geometric Characterizations of the Kerr Isolated Horizon 2002

Horizon geometry abstractly

H - a 3d manifold

 g_{ab} - a degenerate metric tensor of signature 0++

 ∇_a - a covariant derivative, metric, torsion free:

$$\nabla_a g_{bc} = 0 \qquad [\nabla_a, \nabla_b] f = 0$$

Lemma:
$$\ell^a g_{ab} = 0 \implies \mathcal{L}_{\ell} g_{ab} = 0$$

rotation potential $\nabla_a \ell^b = \omega_a^{(\ell)} \ell^b$ rotation invariant $d\omega^{(\ell)} = d\omega^{(\ell')}$

Every (H, g_{ab}, ∇_a) is embeddable in a spacetime.

What geometric conditions, if satisfied by (g_{ab}, ∇_a) make it embeddable in one of the Kerr spacetimes?

Null surface stationary to the 2nd order

Such that

Killing horizon to 2nd order

$$\mathcal{L}_t g_{\mu\nu} = 0$$

$$[\mathcal{L}_t, \nabla_{\mu}] = 0$$

$$\mathcal{L}_t R_{\mu\nu\alpha\beta} = 0$$

Assumption about $\,M\,,\,\,g_{\mu
u}$:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 0$$

Resulting constraints on the horizon geometry

$$\nabla_a \ell^b = \omega_a^{(\ell)} \ell^b$$
 rotation potential

$$\omega_a^{(\ell)}\ell^a=:\kappa^{(\ell)}$$
 surface gravity

Assumption: $\kappa^{(\ell)} \neq 0$

i)
$$\kappa^{(\ell)} = \text{const}$$

The 0th low of BH thermodynamics

ii)
$$g_{ab},\;\omega_a^{(\ell)}$$
 determine all the ∇_a

Free data on a 2d slice

Technically important assumptions: global cross section and the null symmetry generator ℓ is transversal to the section at every point. In particular it nowhere vanishes at the section.

Horizon cross section geometry

2d-surface S

Endowed with (g_{AB}, ω_A) modulo $\omega_A' = \omega_A + f_{,A}$

 ∇_A - the corresponding derivative $\nabla_A g_{BC} = 0$ $\nabla_{[A} \nabla_{B]} f = 0$

Scalar invariants:

Gaussian curvature: K

Rotation scalar: $d\omega =: \Omega dArea$ combined:

 $\Psi := -\frac{1}{2}(K + i\Omega)$

Possible Petrov types

The spacetime Weyl tensor at $\ H$ is determined by the data

$$(S, g_{AB}, \omega_A)$$

Theorem:

The possible Petrov types of *H* are:

/, II, D, //, N, O

wherein:

$$\Psi + \frac{\Lambda}{6} = 0 \qquad \Leftrightarrow \qquad \mathbf{O} \qquad \Leftrightarrow \qquad K = \frac{\Lambda}{3} \qquad d\omega = 0$$

$$\Psi + \frac{\Lambda}{6} \neq 0$$
 \Rightarrow generically II, unless...

The Petrov type D equation

We use a null 2-frame

$$g_{AB} = m_A \bar{m}_B + \bar{m}_A m_B$$
 $dArea_{BC} = i(\bar{m}_B m_C - \bar{m}_C m_B)$

Theorem 1:

At H the spacetime Weyl tensor is of the Petrov type D iff the following two conditions are satisfied by the invariants of S:

$$\Psi + \frac{\Lambda}{6} \neq 0$$

$$\bar{m}^A \bar{m}^B \nabla_A \nabla_B \left(\Psi + \frac{\Lambda}{6}\right)^{-\frac{1}{3}} = 0$$

Remark: a continues function $\left(\Psi + \frac{\Lambda}{6}\right)^{-\frac{1}{3}}$ exists locally on S

$$g_{AB} = m_A \bar{m}_B + \bar{m}_A m_B$$
 $dArea_{BC} = i(\bar{m}_B m_C - \bar{m}_C m_B)$

$$\bar{m}^{A}\bar{m}^{B}\nabla_{A}\nabla_{B}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}} = 0 \qquad \Psi + \frac{\Lambda}{6} \neq 0$$

Symmetries:

$$\phi: S \to S$$

$$g' = \phi^* g, \ \omega' = \phi^* \omega$$

$$g' = g, \ \omega' = \omega + df$$

$$m'_A = \bar{m}_A, \ \omega'_A = \omega_A$$

The non-continuity of $(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}$: use a covering

$$(S,g_{AB},\omega_A) \to (\tilde{S},\tilde{g}_{AB},\tilde{\omega}_A)$$
 s.t. $(\tilde{\Psi}+\frac{\Lambda}{6})^{-\frac{1}{3}}$ continues

Relation with the Near Horizon Geometry Equation

Theorem 2:

Suppose (g_{AB}, ω_A) satisfy the NHG equation, namely

$$\nabla_{(A}\omega_{B)} + \omega_{A}\omega_{B} + \frac{1}{2}(\Lambda - K)g_{AB} = 0$$

Then they also satisfy the Petrov type D equation:

$$\bar{m}^A \bar{m}^B \nabla_A \nabla_B (\Psi + \frac{1}{6} \Lambda)^{-\frac{1}{3}} = 0$$

Non-twisting of the second principal null direction of the Weyl tensor

Theorem:

Suppose (g_{AB}, ω_A) satisfy the NHG equation, namely

$$\nabla_{(A}\omega_{B)} + \omega_{A}\omega_{B} + \frac{1}{2}(\Lambda - K)g_{AB} = 0$$

The holomorphic version

$$g_{AB}dx^{A}dx^{B} = \frac{2}{P^{2}}dzd\bar{z} \qquad m^{A}\partial_{A} = P\partial_{z}$$
$$z' = f(z)$$
$$X = X^{z}\partial_{z} + X^{\bar{z}}\partial_{\bar{z}} =: X^{(1,0)} + X^{(0,1)}$$

The Petrov type D equation reads:

$$\partial_{\bar{z}}(P^2\partial_{\bar{z}}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}) = 0$$

$$X := g^{AB}\partial_{B}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}\partial_{A}$$

$$X^{(1,0)}$$

is a holomorphic vector

The Petrov type D equation on S of genus > 0

$$g_{AB}dx^A dx^B = \frac{2}{P^2} dz d\bar{z} \qquad m^A \partial_A = P \partial_z$$

The Petrov type D equation:

$$\partial_{\bar{z}}(P^2\partial_{\bar{z}}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}) = 0$$

$$\Rightarrow \partial_{\bar{z}} \left(\Psi + \frac{\Lambda}{6} \right)^{-\frac{1}{3}} = \frac{F(z)}{P^2}$$
$$\Rightarrow F(z) \partial_z$$

is a globally defined holomorphic vector field

$$\Rightarrow F(z) = \text{const} \qquad \text{if genus = 1}$$

$$F(z) = 0 \qquad \text{if genus > 1}$$

The Petrov type D equation on S of genus > 0

Theorem 2. Suppose S is a compact 2-surface of genus >0. The only solutions to the Petrov type D equation with a

cosmological constant Λ are (g,ω) such that

$$d\omega = 0$$
 and $K = \mathrm{const} \neq \frac{\Lambda}{3}$

Remark. There are no rotating solutions

The Petrov type D equation on topological spheres.

$$S=S_2$$
, $g,d\omega$ axi-symmetric

Theorem 3:

The family of axisymmetric solutions of the Petrov type D equation with (or without) cosmological constant defined on a topological sphere can be parametrized by two numbers (A,J):

the area and angular momentum, respectively. They take the following values in $\mathbb{R}^+ \times \mathbb{R}$:

$$J \in \left(-\infty, \infty\right) \text{ for } A \in \left(0, \frac{12\pi}{\Lambda}\right) \text{ and } |J| \in \left[0, \frac{A}{16\pi} \sqrt{\frac{\Lambda}{12\pi}} - 1\right) \text{ for } A \in \left(\frac{12\pi}{\Lambda}, \infty\right)$$

$$\Lambda \leq 0$$

$$J \in \left(-\infty, \infty\right) \text{ and } A \in \left(0, \infty\right)$$

The embedding in spacetimes

All the horizons obtained via Theorem 2 can be embedded either in non-extremal Kerr-(anti) de Sitter spacetime or in so called near horizon geometry spacetime obtained by the near extremal horizon limit. The embedding preserves intrinsic geometry of each horizon:

$$g_{ab}, \nabla_a$$

The problem of non-axisymmetric solutions on topologically spherical S is open.

A bifurcated Petrov type D horizon: data

A bifurcated Petrov type D horizon: equations

The Petrov type D equations

for H:

$$\bar{m}^A \bar{m}^B \nabla_A \nabla_B (\Psi + \frac{1}{6} \Lambda)^{-\frac{1}{3}} = 0$$

and for H':

$$m^A m^B \nabla_A \nabla_B (\Psi + \frac{1}{6} \Lambda)^{-\frac{1}{3}} = 0$$

hold simultaneously on S

⇒ additional (axial) symmetry

M.J. Cole, I. Rácz, J.A. Valiente Kroon 2018

JL, A. Szereszewski 2018

In conformally flat coordinates

$$g_{AB}dx^{A}dx^{B} = \frac{2}{P^{2}}dzd\bar{z} \qquad m^{A}\partial_{A} = P\partial_{z}$$

$$\partial_{\bar{z}}(P^{2}\partial_{\bar{z}}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}) = 0 \qquad \Rightarrow \qquad \partial_{\bar{z}}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}} = \frac{F(z)}{P^{2}}$$

$$\partial_{z}(P^{2}\partial_{z}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}}) = 0 \qquad \Rightarrow \qquad \partial_{z}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}} = \frac{\bar{G}(\bar{z})}{P^{2}}$$

$$\partial_{z}\partial_{\bar{z}}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}} = \partial_{\bar{z}}\partial_{z}(\Psi + \frac{\Lambda}{6})^{-\frac{1}{3}} \qquad \Rightarrow \qquad \partial_{z}\left(\frac{F(z)}{P^{2}}\right) = \partial_{\bar{z}}\left(\frac{\bar{G}(\bar{z})}{P^{2}}\right)$$

$$\Rightarrow \qquad \mathcal{L}_{\Phi}g_{AB} = 0 \qquad \qquad \Phi := F(z)\partial_{z} - \bar{G}(\bar{z})\partial_{\bar{z}}$$

$$\Rightarrow \qquad \mathcal{L}_{\Phi}d\omega = 0 \qquad \qquad = X^{(1,0)} - X^{(0,1)}$$

The axial symmetry without the rigidity theorem

Theorem:

Suppose (g_{AB},ω_A) defined on S satisfy the Petrov type D equation $\bar{m}^A\bar{m}^B\nabla_A\nabla_B(\Psi+\frac{1}{6}\Lambda)^{-\frac{1}{3}}=0$

and the conjugate one

$$m^A m^B \nabla_A \nabla_B (\Psi + \frac{1}{6} \Lambda)^{-\frac{1}{3}} = 0$$

Then, there is a vector field Φ at S such that

$$\mathcal{L}_{\Phi}g_{AB}=0$$
 and $\mathcal{L}_{\Phi}d\omega=0$
$$\Phi^A=\mathrm{Re}/\mathrm{Im}\left(d\mathrm{Area}^{AB}\partial_A(\Psi+\frac{\Lambda}{6})^{-\frac{1}{3}}\right)$$

Summary

The type D equation:

$$\bar{m}^A \bar{m}^B \nabla_A \nabla_B \left(-\frac{1}{2}K - \frac{1}{2}i\mathcal{O} + \frac{\Lambda}{6} \right)^{-\frac{1}{3}} = 0$$

Non-twisting of the second double principal vector if:

$$\nabla_{(A}\omega_{B)} + \omega_{A}\omega_{B} + \frac{1}{2}(\Lambda - K)g_{AB} = 0$$

- All the axisymmetric solutions of the type D eq. on topological sphere parametrized by (A, J);
- All solutions on genus>0 derived (non-rotating);
- The extra (axial) symmetry in the case of bifurcated horizon;
- Open problems: existence of non-axisymmetric solutions on topological sphere

Thank you