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Motivations and goals

Causal precedence relation � (J+) between events
p � q if ∃ a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend � onto probability measures on a
given spacetime?

Subquestion: Why probability measures?
Besnard, Franco, Eckstein: causal relation between the states on a
(possibly noncommutative) algebra A.
If A = C∞0 (M), then:

States on A! Borel probability measures onM! “nonlocal
events” .
Pure states on A! Dirac measures δp for p ∈M! events.
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Motivations and goals

Question: What does it mean that µ � ν for µ, ν ∈P(M)?

Measures can be spread also in the timelike direction.

Tomasz Miller (WUT & CC) Causal evolution of prob. measures 19th June 2018 3 / 16



Motivations and goals

Question: What does it mean that µ � ν for µ, ν ∈P(M)?

Measures can be spread also in the timelike direction.

Tomasz Miller (WUT & CC) Causal evolution of prob. measures 19th June 2018 3 / 16



Causality for probability measures

What does it mean that µ � ν? [M. Eckstein, TM ’17]
LetM be a spacetime. Then for any µ, ν ∈P(M)

µ � ν def⇐⇒ ∃ω ∈P(M2) such that:
• ∀B – Borel ω(B ×M) = µ(B), ω(M×B) = ν(B),

• ω(J+) = 1,

where J+ := {(p, q) ∈M2 | p � q}.

ω can be called a causal coupling or a causal transference plan.
For µ = δp, ν = δq, the only coupling is ω = δ(p,q) and so δp � δq iff
p � q.
� is reflexive and transitive. It is antisymmetric forM past/future
distinguishing.
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Causality for probability measures

Each infinitesimal part of the probability measure should travel
along a future-directed causal curve.
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Causality for probability measures

ForM causally simple:
µ � ν ⇐⇒ for any compact K ⊆ supp µ µ(K) ¬ ν(J+(K))
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Causality for probability measures

ForM causally simple:
µ � ν ⇐⇒ for any time function’s level set S µ(J+(S)) ¬ ν(J+(S))
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Causality for probability measures

ForM causally simple:
µ � ν ⇐⇒ for any time function T

∫
M T dµ ¬

∫
M T dν
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Causality for probability measures

ForM globally hyperbolic:
µ � ν ⇐⇒ for any Cauchy hypersurface S µ(J+(S)) ¬ ν(J+(S))
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Causal time-evolution of measures (M – Minkowski)

Causal time-evolution of a pointlike particle
A curve γ : I →M with γ(t) = (t, x(t)) is a worldline of a physical
particle if

∀s, t ∈ I s ¬ t ⇒ γ(s) � γ(t).

Causal time-evolution of a probability measure
A map µ : I →P(M), t 7→ µt such that suppµt ⊆ {t} × R3 for all t ∈ I
is a causal evolution of a measure if

∀s, t ∈ I s ¬ t ⇒ µs � µt.
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Causal time-evolution of measures (M – glob. hyperbolic)

Fix a Cauchy temporal function T .

Causal time-evolution of a pointlike particle
A curve γ : I →M such that T (γ(t)) = t is a worldline of a physical
particle if

∀s, t ∈ I s ¬ t ⇒ γ(s) � γ(t).

Causal time-evolution of a probability measure
A map µ : I →P(M), t 7→ µt such that suppµt ⊆ T −1(t) for all t ∈ I is
a causal evolution of a measure if

∀s, t ∈ I s ¬ t ⇒ µs � µt.
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Causal time-evolution of measures (M – glob. hyperbolic)
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Causal time-evolution of measures (M – glob. hyperbolic)

Theorem [TM ’17]
Fix a Cauchy temporal function T .
Consider a map t 7→ µt ∈P(M)
satisfying supp µt ⊆ T −1(t) for all t ∈ I.
TFAE:

The map t 7→ µt is causal, i.e.
∀s, t ∈ I s ¬ t ⇒ µs � µt.

There exists a probability measure
on the space of worldlines, from
which one can recover µt for all t ∈ I.

The “space of worldlines” is suitably
topologized so as to ensure Polishness. Adapted from Penrose’s “Road to Reality”
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Relationship with the continuity equation (M – Minkowski)

Theorem [M. Eckstein, TM ’17]
Suppose ρ(t, x) satisfies the continuity equation ∂tρ+∇ · ρv = 0 with
a velocity field such that ‖v(t, x)‖ ¬ 1. Then µt defined via

dµt = δt ⊗ ρ(t, x) d3x

evolves causally.

More generally, suppose µt satisfies:

∀Φ ∈ C∞c (I × Rn)
∫
I

∫
M

(∂t + v · ∇) Φ dµtdt = 0

with v as above. Then µt evolves causally.
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Relationship with the continuity equation (M – glob. hyperbolic)

Conjecture
Fix a Cauchy temporal function T . Suppose µt (such that
supp µt ⊆ T −1(t)) satisfies:

∀Φ ∈ C∞c (T −1(I))
∫
I

∫
M
XΦ dµtdt = 0 (?)

with a certain causal vector field X. Then µt evolves causally.

Converse result (preliminary!)
Fix a Cauchy temporal function T . Suppose µt evolves causally. Then there
exists a causal vector field X such that (?) holds.

X is generally rather low-regular. Namely, L2(T −1(I),
∫
I µtdt)-regular.
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Conclusions and take-home messages

The causal relation J+ can be naturally extended onto P(M) – the
space of Borel probability measures onM.
One can use thus extended relations to describe the causal evolution
of probability measures in glob. hyperbolic spacetimes.

Time-evolution of a pointlike particle ! single worldline.
Time-evolution of a nonlocal object ! prob. measure on the space
of worldlines.

The continuity equation ∂tµt +∇ · µtv = 0, when rewritten as∫
I

∫
MXΦ dµtdt = 0 for all test functions Φ, is nothing but a

“nonlocal analogue” of the requirement that γ′(t) is a causal vector.
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Thank you for your attention!

M. Eckstein and T. Miller, Causality for nonlocal phenomena,
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Journal of Geometry and Physics 2017 116, 295–315,

M. Eckstein and T. Miller, Causal evolution of wave packets,
Physical Review A 2017 95, 032106,

T. Miller, On the causality and K-causality between measures,
Universe 2017 3(1):27,
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Bonus: Polish spaces of causal curves

Q: How to topologize sets of (fut-dir) causal curves?
A (naïve): Induce topology from C(I,M) (the compact-open
top.)
Too large a space! Various parameterizations of an unparameterized
curve treated as distinct elements!
Two ways out:

Take a quotient modulo (continuous strictly increasing)
reparameterizations ⇔ focus on unparameterized curves, and use the
C0-topology.
Choose the “canonical” parameterization of each curve — e.g. the
arc-length parameterization — and use the compact-open topology.
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Polish spaces of causal curves

Spaces of causal curves parameterized “in accordance with T ”
M – stably causal spacetime, T – time function, I – interval.
CIT := the space of all fut-dir causal curves γ ∈ C(I,M) such that

∃ cγ > 0 ∀s, t ∈ I T (γ(t))− T (γ(s)) = cγ(t− s),

endowed with the compact-open topology induced from C(I,M).

CIT is separable and completely metrizable (i.e. Polish).
C := the space of all compact unparameterized causal curves with the
C0-topology. Theorem: C

[a,b]
T
∼= C and hence:

C is Polish!
C
[a,b]
T1
∼= C

[c,d]
T2 .

M – glob. hyperbolic, T1, T2 – Cauchy temporal functions.
Theorem: CR

T1
∼= CR

T2 .
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Causal time-evolution of measures (full statement of the theorem)

Theorem [TM ’17]
Fix a Cauchy temporal function T .
Consider a map t 7→ µt ∈P(M)
satisfying supp µt ⊆ T −1(t) for all t ∈ I.
TFAE:

The map t 7→ µt is causal, i.e.

∀s, t ∈ I s ¬ t ⇒ µs � µt.

∃σ ∈P(CIT ) such that

(evt)#σ = µt,

where evt : CIT →M, γ 7→ γ(t). Adapted from R. Penrose’s “Road to Reality”
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