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Introduction

Why a synthetic approach to Lorentzian geometry?

@ need for low regularity (of the metric): PDE point-of-view, physically
relevant models (matched spacetimes, shock waves, impulsive
gravitational waves, etc.)

@ separate main concepts and derived notions of the causal structure

e minimal framework for causality and (timelike/causal) curvature
bounds with continuous metrics

@ timelike/causal curvature bounds without a Lorentzian metric
@ possible applications to Quantum Gravity
Riemannian analogue: Length spaces ... metric space (X, d) with

d(z,y) = inf{Ly(\) : A path connecting z and y} ~» synthetic curvature
bounds via triangle comparison
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X set, < preorder on X, < transitive relation contained in <, d metric on
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Lorentzian pre-length spaces

X set, < preorder on X, < transitive relation contained in <, d metric on
X, 7: X x X — [0, 00] lower semicontinuous (with respect to d)

(X, d,<,<,7) is a Lorentzian pre-length space if

(2, 2) = 7(2, ) + 7(y, 2) (z<y<2z),

and 7(z,y) =0ifz £ y and 7(z,y) > 0 & z < y;
7 is called time separation function

examples

@ smooth spacetimes (M, g) with usual time separation function
7(p, q) :==sup{Ly(7) : v f.d. causal from p to ¢}
o finite directed graphs
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Causal curves (1/2)

Definition
I C R interval, 7v: I — X non-constant is future directed causal (timelike)
if v locally Lipschitz continuous (wrt. d) and for t,t € I, t; < to:

v(t) < y(t2) (v(t) < v(t2)); analogously for null (v(t1) < y(t2) and
~v(t1) & v(t2)) and past directed curves

@ Lorentz cylinder S} x R: every non-constant locally Lipschitz curve is
timelike and causal ~» need causality conditions

@ Minkowski spacetime R$: ¢+ (¢, cos(t),sin(¢)) has null tangent but
is timelike

Proposition

continuous, strongly causal spacetimes: different notions of causal curves
agree
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Causal curves (2/2)

Definition
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Causal curves (2/2)

v: [a, b] — X fd. causal T—length defined by
L( 1nf{z Y(ti1))ta=tg <t <...<ty="b}

Proposition

| A\

(M, d" <, <, 7) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M, g), then L, () = Ly(¥)

v

intrinsic notion of geodesics? ~+» maximal causal curves

(X, d, <, <,7) Lorentzian pre-length space

Definition

v: [a,b] = X f.d. causal is maximal if L, () = 7(y(a),~(b))
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Further structure

@ causality conditions (e.g. strong causality: topology generated by
IT(z) NI (y) ={x < 2z < y} agrees with the metric topology, etc.)

@ causal connectedness (z < y or z < y = 3 f.d. causal/timelike curve
from z to y)

@ limit curve theorems

@ localizability (locally the geometry and causality of a (smooth)
Lorentzian manifold is better behaved than globally)

@ synthetic notion of regularity = maximal causal curves have causal
character

@ L, upper semicontinuous
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Lorentzian length spaces

(X, d, <, <,7) locally causally closed, causally path connected, localizable
Lorentzian pre-length space; for z, y € X define
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Lorentzian length spaces

(X, d, <, <,7) locally causally closed, causally path connected, localizable
Lorentzian pre-length space; for z, y € X define

T(z,y) :=sup{L-(7) : v f.d. causal from z to y},

if the set is not empty, otherwise 7 (z,y) :=0
X is a Lorentzian length space if T = 7; if, in addition X is regularly
localizing, then X is a regular Lorentzian length space

V.

(M, d", <, <,7) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M, g) (since L; = L) is a regular LLS

causal ladder for Lorentzian length spaces ~» sufficient conditions
(analogous to the smooth spacetime case) for 7 continuous and finite
(needed for triangle comparison)
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Timelike triangles

Definition
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Timelike triangles

Definition

timelike geodesic triangle in Lorentzian pre-length space (X, d, <, <,7) is
triple (z,y,2) € X3 with 1 < y < 2, 7(z,2) < 0o and s.t. sides are
realized by f.d. causal curves

i.e., 3 f.d. causal curves o, 5,7 s.t. Ly(a) = 7(x,y), L:(8) = 7(y, 2) and

L:(v) =7(z,2)
~ 7(2,9),7(y, 2) < 0o and a, #,y maximal
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Timelike curvature bounds

Lorentzian pre-length space X has timelike curvature bounded below
(above) by K € R if all points in X have nhd. U s.t.:

@ 7|y« finite and continuous
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Lorentzian pre-length space X has timelike curvature bounded below
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@ 7|y« finite and continuous

Q z,y € U with z < y = 3 f.d. maximal causal curve in U from z to y

@ (z,y, z) small timelike geodesic triangle in U, (Z, y, z) comparison
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7(p, q) < 7(p,q) (respectively 7(p, q) > 7(p, q))

Clemens Samann, University of Vienna Int. Meeting on Lorentzian Geometry



Timelike curvature bounds

Lorentzian pre-length space X has timelike curvature bounded below
(above) by K € R if all points in X have nhd. U s.t.:

@ 7|y« finite and continuous

Q z,y € U with z < y = 3 f.d. maximal causal curve in U from z to y

@ (z,y, z) small timelike geodesic triangle in U, (Z, y, z) comparison
triangle of (z, y, z) in Mg, then for p, ¢ points on the sides of
(z,y,2) and p, g corresponding points (z, y, 2):

7(p, q) < 7(p,q) (respectively 7(p, q) > 7(p, q))

Alexander, Bishop: smooth Lorentzian manifold with sectional curvature
bounds
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Branching of maximal curves

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, v: [a, b] — X maximal curve; z := 7(t),
t € (a, b) is branching point of v if 3 maximal curves «, 5: [a, ] = X
with ¢ > b and al(gg = Bla,g = V[ag. ([t ) NB([E, c]) = {z}
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Branching of maximal curves

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, v: [a, b] — X maximal curve; z := 7(t),
t € (a, b) is branching point of v if 3 maximal curves «, 5: [a, ] = X
with ¢ > b and al(gg = Blia,g = Vl[a,g. a([t; ) NB([¢, c]) = {z}

X strongly causal Lorentzian length space with timelike curvature bounded
below by some K € R s.t. X regular and locally compact or timelike
locally uniquely geodesic, then maximal timelike curves do not have
timelike branching points
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Causal curvature bounds

@ causal geodesic triangles: x,y,z€ X st.z < y<zorz <y<K z,
~> one side possibly zero length (or collapsed)

Clemens Samann, University of Vienna Int. Meeting on Lorentzian Geometry



Causal curvature bounds

@ causal geodesic triangles: z,y,z € X st. e < y<zorz <y <K 2,
~> one side possibly zero length (or collapsed)

@ causal curvature bounds analogously to timelike curvature bounds
except that one can only compare distances to the timelike sides

Clemens Samann, University of Vienna Int. Meeting on Lorentzian Geometry



Causal curvature bounds

@ causal geodesic triangles: z,y,z € X st. e < y<zorz <y <K 2,
~> one side possibly zero length (or collapsed)

@ causal curvature bounds analogously to timelike curvature bounds
except that one can only compare distances to the timelike sides

@ length increasing push-up for smooth spacetimes via the Gauss
Lemma; here new perspective

Clemens Samann, University of Vienna Int. Meeting on Lorentzian Geometry



Causal curvature bounds
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~> one side possibly zero length (or collapsed)

@ causal curvature bounds analogously to timelike curvature bounds
except that one can only compare distances to the timelike sides

@ length increasing push-up for smooth spacetimes via the Gauss
Lemma; here new perspective
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X strongly causal Lorentzian pre-length space with causal curvature
bounded above, v: [a, b] — X f.d. causal curve with v(a) < v(b) and 3
sub-interval [c, d] of [a, b] s.t. 7|[¢,q null = v not maximal
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Curvature singularities

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature
unbounded below/above if Yp € X 3 nhd. U s.t. 7 finite and continuous
on U and maximal timelike/causal curves exist in U but triangle
comparison fails for every K € R ~» X has curvature singularity
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Curvature singularities

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature
unbounded below/above if Yp € X 3 nhd. U s.t. 7 finite and continuous
on U and maximal timelike/causal curves exist in U but triangle
comparison fails for every K € R ~» X has curvature singularity

-3 -2 -1 1 2

Figure : Schwarzschild has timelike curvature unbounded below
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Inextendibility of spacetimes
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geodesics as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike
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| A\

(M, g) strongly causal, smooth and timelike geodesically complete
spacetime, then (M, g) is inextendible as a regular Lorentzian length space
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