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Introduction

Context: Pseudo-Riemannian manifolds

Context

(M, g) Pseudo-Riemannian manifold of dimension 4:

M di�erentiable manifold of dimension 4

g Pseudo-Riemannian metric.

Curvature

1 ∇ denotes the Levi-Civita connection.

2 R(x , y) = ∇[x,y ] − [∇x ,∇y ] is the curvature operator.

For an orthonormal basis {e1, . . . , e4} with εi = g(ei , ei ):

Ricci tensor

ρ(x , y) =
∑

i εiR(x , ei , y , ei ) = g(Ric(x), y)

Scalar curvature

τ =
∑

i εiρ(ei , ei )

Weyl tensor

W (x , y , z , t) = R(x , y , z , t) + τ
6
{g(x , z)g(y , t)− g(x , t)g(y , z))}

+ 1
2
{ρ(x , t)g(y , z)− ρ(x , z)g(y , t) + ρ(y , z)g(x , t)− ρ(y , t)g(x , z)}

QE manifolds
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Introduction

Quasi-Einstein manifolds

Bakry-Émery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

ρµf = Hesf + ρ− µdf ⊗ df , for µ ∈ R.

Quasi-Einstein manifolds

Let (M, g) be a pseudo-Riemannian manifold, f a function on M, and µ ∈ R.
(M, g) is generalized quasi-Einstein if the tensor ρµf is a multiple of g :

Hesf + ρ− µdf ⊗ df = λ g for some λ ∈ C∞(M) . (QEE)

Einstein manifolds

For f constant, the QEE reduces to the Einstein equation:

ρ = λ g ,

where λ = τ
4
is constant.

QE manifolds
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Introduction

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For µ = 0, the QEE reduces to the gradient Ricci almost soliton equation:

Hesf + ρ = λ g , for λ ∈ C∞(M)

When λ is constant this is the gradient Ricci soliton equation, which
identi�es self-similar solutions of the Ricci �ow: ∂

∂t
g(t) = −2ρ(t).

For λ = κ τ + ν, this identi�es κ-Einstein solitons, which are self-similar
solutions of the Ricci-Bourguignon �ow: ∂tg(t) = −2(ρ(t)− κτ(t) g(t)),
κ ∈ R.

Conformally Einstein manifolds

The value µ = − 1
2
is exceptional :

(M, g) is generalized quasi-Einstein ⇔ (M, e−f g) is Einstein.

Static space-times

For µ = 1, h = e−f and λ = −∆h
h
, QEE becomes the de�ning equation of

static manifolds:
Hesh−hρ = ∆hg .

QE manifolds
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Introduction

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:

n ≥ 4:

{
R = R1 ⊕ R2 ⊕ R3

τ = Tr(ρ) ρ0 = ρ− τ
n
g W

n = 4:

{
R = R1 ⊕ R2 ⊕ R+

3 ⊕ R−3

τ = Tr(ρ) ρ0 = ρ− τ
n
g W+ W−

A manifold is said to be half conformally �at if either W− = 0 or W+ = 0.

It seems reasonable to impose conditions on the Weyl tensor to obtain partial
classi�cation results for QE manifolds.

QE manifolds
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Introduction

Motivation of this talk

There are natural conditions that one can impose related to the structure of
the Weyl tensor:

W = 0: (M, g) is locally conformally �at.

W± = 0: (M, g) is half conformally �at.

div4 W = 0: the Weyl tensor is harmonic.

div4 W (X ,Y ,Z) = − 1
2
C(X ,Y ,Z) =

(∇Xρ)(Y ,Z)− (∇Y ρ)(X ,Z)− 1
6

(X (τ)g(Y ,Z)− Y (τ)g(X ,Z)).

The Cotton tensor is preserved by a conformal change of the form
g̃ = e−f g :

C̃ = C +
1
4
W (·, ·, ·,∇f )

Aim of the talk

1 To understand the local structure of quasi-Einstein manifolds in
dimension four under �reasonable conditions� on the Weyl tensor.

2 To �nd examples with some of the conditions above but W 6= 0.

QE manifolds
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Introduction

Basic equations and causal character of ∇f

Basic relations:

1 τ + ∆f − µ‖∇f ‖2 = nλ.

2 ∇τ + 2µ(3λ− τ)∇f + 2(µ− 1)Ric(∇f ) = 6∇λ.

3 R(X ,Y ,Z ,∇f ) = dλ(X )g(Y ,Z)− dλ(Y )g(X ,Z) + (∇Y ρ)(X ,Z)

−(∇Xρ)(Y ,Z) + µ {df (Y )Hesf (X ,Z)− df (X )Hesf (Y ,Z)}.

4 Let η = 2µ+ 1. Then

W (X ,Y ,Z ,∇f ) = −C(X ,Y ,Z) + τη{df (Y )g(X ,Z)−df (X )g(Y ,Z)}
6

+ η{ρ(X ,∇f )g(Y ,Z)−ρ(Y ,∇f )g(X ,Z)}
6

+ η{ρ(Y ,Z)df (X )−ρ(X ,Z)df (Y )}
2

.

In general, if (M, g) is QE, ∇f may have di�erent causal characters.

We say that a gradient Ricci soliton (M, g , f ) is

isotropic if ‖∇f ‖ = 0: the level sets of f are degenerate hypersurfaces.

non-isotropic if ‖∇f ‖ 6= 0: the level sets of f are non-degenerate
hypersurfaces.

QE manifolds
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Non-isotropic four-dimensional manifolds

Non-isotropic 4-dimensional manifolds

Theorem

Let (M, g) be a non-isotropic generalized QE manifold of dimension 4 with
µ 6= − 1

2
and satisfying

the Weyl tensor is harmonic and W (·,∇f , ·,∇f ) = 0, or

W+ = 0.

Then (M, g) decomposes locally as a warped product of the form I ×φ N, where
N has constant sectional curvature. Hence (M, g) is locally conformally �at.

Previous works in Riemannian signature:

G. Catino; Generalized quasi-Einstein manifolds with harmonic Weyl
tensor, Math. Z. 271 (2012).

X. Chen, Y. Wang; On four-dimensional anti-self-dual gradient Ricci
solitons, J. Geom. Anal. 25 2, (2011).

G. Catino; A note on four-dimensional (anti-)self-dual quasi-Einstein
manifolds, Di�erential Geom. Appl., 30 6, (2012).

QE manifolds
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Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

1 Choose a local orthonormal frame {V = ∇f
‖∇f ‖ ,E1,E2,E3}

2 ∇f is an eigenvector of the Ricci operator

W (X ,Y ,Z ,∇f ) = −C(X ,Y ,Z) + τη{df (Y )g(X ,Z)−df (X )g(Y ,Z)}
6

+ η{ρ(X ,∇f )g(Y ,Z)−ρ(Y ,∇f )g(X ,Z)}
6

+ η{ρ(Y ,Z)df (X )−ρ(X ,Z)df (Y )}
2

3 ∇f generates a totally geodesic distribution.

The level sets of f are totally umbilical hypersurfaces.

Use previous relations to show that:

Hesf (Ei ,Ej) = (λ+ 1

5
(ρ(V ,V )ε− τ))g(Ei ,Ej).

4 (M, g) is a twisted product I ×ω N.

5 Since ρ(V ,Ei ) = 0, the twisted product reduces to a warped product of
the form

(M, g) = (I × N, εdt2 + ψ(t)2gN)

6 Since the Weyl tensor is harmonic, (N, gN) is Einstein and of dimension 3.
Hence (M, g) is locally conformally �at.
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Isotropic 4-dimensional manifolds: the Lorentzian setting

Theorem

Let (M, g) be an isotropic generalized QE Lorentzian manifold of dimension 4
with µ 6= − 1

2
. If

the Weyl tensor is harmonic, and

W (·, ·, ·,∇f ) = 0,

then

λ = 0, and

(M, g) is a pp-wave, i.e., (M, g) is locally isometric to R2 × R2 with
metric

g = 2 dudv + H(u, x1, x2)du2 + dx21 + dx22 .
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Sketch of the proof. Isotropic Lorentzian case.

1 ∇f is an eigenvector of the Ricci operator for the eigenvalue λ

2 Choose a local pseudo-orthonormal frame {∇f ,U,E1,E2}
3 Compute the Ricci operator and the Hessian operator:

W (X ,Y ,Z ,∇f ) = −C(X ,Y ,Z) + τη{df (Y )g(X ,Z)−df (X )g(Y ,Z)}
6

+ η{ρ(X ,∇f )g(Y ,Z)−ρ(Y ,∇f )g(X ,Z)}
6

+ η{ρ(Y ,Z)df (X )−ρ(X ,Z)df (Y )}
2

Ric =


? 0 0

0 0 0
0 0 0
0 0 0

 hesf =


0 ? 0 0
0 0 0 0
0 0 0 0
0 0 0 0


4 D = span{∇f } is a null parallel distribution: Walker manifold.

5 0 = R(Ei ,U,∇f ,Ei ) = λ
3
⇒ λ = 0.

6 R(∇f ⊥,∇f ⊥, ·, ·) = 0 and the Ricci tensor is isotropic, so (M, g) is a

pp-wave.
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Isotropic Lorentzian pp-waves

Locally conformally �at quasi-Einstein pp-waves

A locally conformally �at pp-wave is locally isometric to R2 × R2 with metric

g = 2 dudv + H(u, x1, x2)du2 + dx21 + dx22

where H(u, x1, x2) = a(u)(x21 + x22 ) + b1(u)x1 + b2(u)x2 + c(u), and it is
isotropic QE for f a function of u satisfying f ′′(u)− µf ′(u)2 − 2a(u) = 0.

�, E. García-Río and S. Gavino-Fernández; Locally conformally �at Lorentzian quasi-Einstein manifolds.

Monatsh. Math. 173 (2014), 175�186.

Non-locally conformally �at quasi-Einstein pp-waves

Let (M, g) be a pp-wave with W 6= 0, the following statements are equivalent:

(M, g) is isotropic generalized quasi-Einstein,

W is harmonic,

∆xH = φ(u).

If any of these conditions holds, then W (·, ·, ·,∇f ) = 0 and f is given by:

f ′′(u) + µf ′(u)2 − 1
2

(
∂2H

∂x21
(u, x1, x2) +

∂2H

∂x22
(u, x1, x2)

)
= 0

QE manifolds
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Isotropic half conformally �at QE manifolds of signature (2, 2)

Theorem

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of
signature (2, 2), with µ 6= − 1

2
. Then (M, g) is a Walker manifold with a

2-dimensional null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

gW (x1, x2, x3, x4) =


a(x1, x2, x3, x4) c(x1, x2, x3, x4) 1 0
c(x1, x2, x3, x4) b(x1, x2, x3, x4) 0 1

1 0 0 0
0 1 0 0



QE manifolds
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Sketch of the proof. Isotropic case.

1 Choose a local appropriate frame of null vectors: {∇f , u, v ,w}

g =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


The self-dual condition expresses as:

W (∇f , v , z , t) = W (u,w , z , t) ,

W (u, v , z , t) = 0 ,

W (∇f ,w , z , t) = 0 .

W (X ,Y ,Z ,∇f ) = −C(X ,Y ,Z) + τη{df (Y )g(X ,Z)−df (X )g(Y ,Z)}
6

+ η{ρ(X ,∇f )g(Y ,Z)−ρ(Y ,∇f )g(X ,Z)}
6

+ η{ρ(Y ,Z)df (X )−ρ(X ,Z)df (Y )}
2

2 Use these relations to show that λ = τ
4
and the Ricci operator has the

form:

Ric =


λ 0 a c
0 λ c b
0 0 λ 0
0 0 0 λ

 .

3 D = span{∇f , u} is a null parallel distribution, so (M, g) is a Walker

manifold.
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Isotropic half conformally �at QE manifolds of signature (2, 2)

Theorem

Let (M, g) be an isotropic generalized-quasi Einstein manifold of signature
(2, 2), with µ 6= − 1

2
. Then (M, g) is a Walker manifold with a 2-dimensional

null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

gW (x1, x2, x3, x4) =


a(x1, x2, x3, x4) c(x1, x2, x3, x4) 1 0
c(x1, x2, x3, x4) b(x1, x2, x3, x4) 0 1

1 0 0 0
0 1 0 0


There are several families of Walker manifolds that will play a role:

1 Deformed Riemannian extensions,

2 Modi�ed Riemannian extensions.
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Riemannian extensions

(T ∗Σ, gD)

π

��
(Σ,D)

Parallel null
distribution:

ker π∗

(T ∗Σ, gD) self-dual.

(T ∗Σ, gD) Einstein ⇔ ρDsym = 0.

(T ∗Σ, gD) locally conformally �at ⇔ (Σ,D) projectively �at.

Reference:

Patterson and Walker; Riemann extensions,Quart. J. Math., Oxford Ser. (2) 3 1952.
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Deformed Riemannian extensions

(T ∗Σ, gD,Φ)

π

��
(Σ,D,Φ)

Parallel null
distribution:

ker π∗

Φ is a (0, 2)-symmetric tensor �eld on Σ

gD,Φ(XC ,Y C) = −ι(DXY + DYX ) + π∗Φ
In local coordinates:

gD =


−2x1′Γ1

11 − 2x2′Γ
2
11 + Φ11 −2x1′Γ1

12 − 2x2′Γ
2
12 + Φ12 1 0

−2x1′Γ1
12 − 2x2′Γ

2
12 + Φ21 −2x1′Γ1

22 − 2x2′Γ
2
22 + Φ22 0 1

1 0 0 0
0 1 0 0


(T ∗Σ, gD,Φ) self-dual.

(T ∗Σ, gD,Φ) Einstein ⇔ ρDsym = 0.

(T ∗Σ, gD,Φ) locally conformally �at ⇒ (Σ,D) projectively �at.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.
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Isotropic half conformally �at QE manifolds of signature (2, 2)

Quasi-Einstein manifolds with λ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature (2, 2)
with µ 6= − 1

2
which is not Ricci �at. Then (M, g) is locally isometric to a

deformed Riemannian extension (T ∗Σ, gD,φ) of an a�ne surface (Σ,D) that
satis�es the a�ne quasi-Einstein equation:

HesDf̂ +2ρDs − µdf̂ ⊗ df̂ = 0 for some f̂ ∈ C∞(Σ) and µ ∈ R

and, moreover, f = π∗ f̂ and λ = 0.

Remarks.

There exist examples of self-dual QE manifolds which are NOT locally
conformally �at in dimension four.

The previous result suggest the new concept of a�ne quasi-Einstein
manifold:
(N,D) is quasi-Einstein if there exist a function f̂ in N satisfying the
a�ne quasi-Einstein equation

HesDf̂ +2ρDs − µdf̂ ⊗ df̂ = 0.
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Sketch of the proof. Isotropic case. λ constant

1 We use the previous pseudo-orthonormal frame {∇f , u, v ,w} where

Ric =


λ 0 a c
0 λ c b
0 0 λ 0
0 0 0 λ

 .

2 We use that λ = const. to see that λ = 0, τ = 0 and Ric(∇f ) = 0.

3 D = span{∇f , u} is a null parallel distribution such that Ric(D) = 0 and
Ric2 = 0.

4 We see that R(·,D)D = 0, this shows that (M, g) is indeed a deformed

Riemannian extension.

5 We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the a�ne surface to be a�ne quasi-Einstein.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of neutral signature

Sketch of the proof. Isotropic case. λ constant

1 We use the previous pseudo-orthonormal frame {∇f , u, v ,w} where

Ric =


0 0 a c
0 0 c b
0 0 0 0
0 0 0 0

 .

2 We use that λ = const. to see that λ = 0, τ = 0 and Ric(∇f ) = 0.

3 D = span{∇f , u} is a null parallel distribution such that Ric(D) = 0 and
Ric2 = 0.

4 We see that R(·,D)D = 0, this shows that (M, g) is indeed a deformed

Riemannian extension.

5 We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the a�ne surface to be a�ne quasi-Einstein.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of neutral signature

Sketch of the proof. Isotropic case. λ constant

1 We use the previous pseudo-orthonormal frame {∇f , u, v ,w} where

Ric =


0 0 a c
0 0 c b
0 0 0 0
0 0 0 0

 .

2 We use that λ = const. to see that λ = 0, τ = 0 and Ric(∇f ) = 0.

3 D = span{∇f , u} is a null parallel distribution such that Ric(D) = 0 and
Ric2 = 0.

4 We see that R(·,D)D = 0, this shows that (M, g) is indeed a deformed

Riemannian extension.

5 We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the a�ne surface to be a�ne quasi-Einstein.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of neutral signature

Sketch of the proof. Isotropic case. λ constant

1 We use the previous pseudo-orthonormal frame {∇f , u, v ,w} where

Ric =


0 0 a c
0 0 c b
0 0 0 0
0 0 0 0

 .

2 We use that λ = const. to see that λ = 0, τ = 0 and Ric(∇f ) = 0.

3 D = span{∇f , u} is a null parallel distribution such that Ric(D) = 0 and
Ric2 = 0.

4 We see that R(·,D)D = 0, this shows that (M, g) is indeed a deformed

Riemannian extension.

5 We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the a�ne surface to be a�ne quasi-Einstein.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of neutral signature

Sketch of the proof. Isotropic case. λ constant

1 We use the previous pseudo-orthonormal frame {∇f , u, v ,w} where

Ric =


0 0 a c
0 0 c b
0 0 0 0
0 0 0 0

 .

2 We use that λ = const. to see that λ = 0, τ = 0 and Ric(∇f ) = 0.

3 D = span{∇f , u} is a null parallel distribution such that Ric(D) = 0 and
Ric2 = 0.

4 We see that R(·,D)D = 0, this shows that (M, g) is indeed a deformed

Riemannian extension.

5 We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the a�ne surface to be a�ne quasi-Einstein.

Reference:

A��; Riemann extensions of a�ne connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of neutral signature

Isotropic half conformally �at QE manifolds of signature (2, 2)

Generalized Quasi-Einstein manifolds (λ non-constant)

Let (M, g) be an isotropic self-dual generalized quasi-Einstein manifold of
signature (2, 2) with µ 6= 1

2
which is not Ricci �at. If λ is not constant then

(M, g) is locally isometric to a modi�ed Riemannian extension (T ∗Σ, gD,Φ,T ,Id)
of an a�ne surface (Σ,D) with:

Φ = 2
C
e f̂ (HesD

f̂
+2ρDs − µdf̂ ⊗ df̂ ),

T = Ce−f̂ Id ,

λ = 3
2
Ce−f .
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Modi�ed Riemannian extensions

(T ∗Σ, gD,Φ)

π

��
(Σ,D,Φ)

Parallel null
distribution:

ker π∗

Φ is a (0, 2)-symmetric tensor �eld on Σ

T and S are (1, 1)-tensor �elds on Σ

gD,Φ

,T ,S

(XC ,Y C) = −ι(DXY + DYX ) + π∗Φ

In local coordinates:

gD,Φ

,T ,

=


g11 g12 1 0
g12 g22 0 1
1 0 0 0
0 1 0 0


gij = −2

∑
k

xk′Γ
k
ij + Φij

Self-dual Walker manifolds (E. Calviño-Louzao, E. García-Río, R. Vázquez-Lorenzo)

A four-dimensional Walker metric is self-dual if and only if it is locally isometric
to the cotangent bundle (T ∗Σ, g), where

g = ιX (ι Id ◦ι Id) + ιT ◦ ι Id +gD + π∗Φ
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2

∑
r,s

xr′xs′(T
r
i S

s
j + T r

j S
s
i )− 2

∑
k

xk′Γ
k
ij + Φij
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Methods to construct examples

Method to construct examples with constant λ:

1 Take any a�ne surface (Σ,D).

2 Solve the a�ne quasi-Einstein equation:

HesDf̂ +2ρDs − µdf̂ ⊗ df̂ = 0.

Then (T ∗Σ, gD,Φ) is a self-dual QE manifold with λ = 0 and f = π∗ f̂ .

Method to construct examples with non-constant λ:

1 Take any a�ne surface (Σ,D).

2 Take any non-constant function f̂ on Σ.
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The a�ne quasi-Einstein equation

For an a�ne manifold (N,D) consider the QEE

HesDf̂ +2ρDs − µdf̂ ⊗ df̂ = 0.

Consider the change of variable f = e−
1

2
µf̂ to transform the equation into

Hesf = µf ρs .

Let E(µ) be the space of solutions for the a�ne QEE.

First results for the a�ne QEE.

If f ∈ E(µ) then

1 If X is Killing, then Xf ∈ E(µ).

2 f ∈ C∞(N) and, if N is real analytic, then f is real analytic.

3 If f (p) = 0 and df (p) = 0, then f = 0 near p.

4 dim(E(µ)) ≤ dimN + 1.
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Thank you!
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Four-dimensional quasi-Einstein manifolds
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