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Introduction

Context: Pseudo-Riemannian manifolds

(M, g) Pseudo-Riemannian manifold of dimension 4:
@ M differentiable manifold of dimension 4

@ g Pseudo-Riemannian metric.
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Context: Pseudo-Riemannian manifolds

(M, g) Pseudo-Riemannian manifold of dimension 4:
@ M differentiable manifold of dimension 4

@ g Pseudo-Riemannian metric.

’

Curvature

@ V denotes the Levi-Civita connection.

O R(x,y) = Vi, — [Vx, V,] is the curvature operator.

For an orthonormal basis {e1, ..., es} with e; = g(ej, &):
Ricci tensor Scalar curvature

p(X, )/) = Zi EiR(Xv €Y, ei) = g(RiC(X)7y) T = Z,’ Eip(ef)ef)
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Context: Pseudo-Riemannian manifolds

(M, g) Pseudo-Riemannian manifold of dimension 4:
@ M differentiable manifold of dimension 4

@ g Pseudo-Riemannian metric.

v
Curvature

@ V denotes the Levi-Civita connection.

O R(x,y) = Vi, — [Vx, V,] is the curvature operator.
For an orthonormal basis {e1, ..., es} with e; = g(ej, &):
Ricci tensor Scalar curvature

p(X, )/) = Zi EiR(Xv €Y, ei) = g(RiC(X)7y) T = Z,’ Eip(ef)ef)

W(Xaya Z, t) = R(X7y7 Z, t) + %{g(X, Z)g(y, t) - g(X7 t)g(y7 Z))}
+3{p(x, )g(y, 2) — p(x, 2)g(y, t) + p(y, 2)g(x, t) — p(y, t)g(x, 2)}
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Quasi-Einstein manifolds

Bakry-Emery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

p¥ =Hesr + p — pdf @ df, for p € R.
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Quasi-Einstein manifolds

Bakry-Emery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

p¥ =Hesr + p — pdf @ df, for p € R.

Quasi-Einstein manifolds

Let (M, g) be a pseudo-Riemannian manifold, f a function on M, and p € R.
(M, g) is generalized quasi-Einstein if the tensor pf is a multiple of g:

Hesr + p — pdf ® df = A g for some A € C*=(M). (QEE)

QE manifolds



Introduction
Quasi-Einstein manifolds

Bakry-Emery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

p¥ =Hesr + p — pdf @ df, for p € R.

Quasi-Einstein manifolds

Let (M, g) be a pseudo-Riemannian manifold, f a function on M, and p € R.
(M, g) is generalized quasi-Einstein if the tensor pf is a multiple of g:

Hesr + p — pdf ® df = A g for some A € C*=(M). (QEE)

Einstein manifolds

For f constant, the QEE reduces to the Einstein equation:

p=2Ag,

where A\ = 7 is constant.
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Introduction

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For 1w = 0, the QEE reduces to the gradient Ricci almost soliton equation:

Hesr + p = Ag, for A € C™(M)
@ When ) is constant this is the gradient Ricci soliton equation, which
identifies self-similar solutions of the Ricci flow: 2 g(t) = —2p(t).

@ For A\ = k7 + v, this identifies k-Einstein solitons, which are self-similar
solutions of the Ricci-Bourguignon flow: 0:g(t) = —2(p(t) — k7(t) g(t)),
Kk € R.

v
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Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For 1w = 0, the QEE reduces to the gradient Ricci almost soliton equation:

Hesr + p = Ag, for A € C™(M)
@ When ) is constant this is the gradient Ricci soliton equation, which
identifies self-similar solutions of the Ricci flow: 2 g(t) = —2p(t).

@ For A\ = k7 + v, this identifies k-Einstein solitons, which are self-similar
solutions of the Ricci-Bourguignon flow: 0:g(t) = —2(p(t) — k7(t) g(t)),
Kk € R.

| A\

Conformally Einstein manifolds

The value = —1 is exceptional :

(M, g) is generalized quasi-Einstein < (M, e "g) is Einstein.

QE manifolds



Introduction

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For 1w = 0, the QEE reduces to the gradient Ricci almost soliton equation:

Hesr + p = Ag, for A € C™(M)
@ When ) is constant this is the gradient Ricci soliton equation, which
identifies self-similar solutions of the Ricci flow: 2 g(t) = —2p(t).

@ For A\ = k7 + v, this identifies k-Einstein solitons, which are self-similar
solutions of the Ricci-Bourguignon flow: 0:g(t) = —2(p(t) — k7(t) g(t)),
Kk € R.

v

Conformally Einstein manifolds

The value = —1 is exceptional :

(M, g) is generalized quasi-Einstein < (M, e "g) is Einstein.

Forpy=1, h=efand X\ = —%, QEE becomes the defining equation of
static manifolds: et — o = AV

QE manifolds




Introduction

Motivation of this talk

The QEE provides information directly on the Ricci tensor. J

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:

@ n>4:
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Motivation of this talk

The QEE provides information directly on the Ricci tensor. J

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:

{9‘{2 A1 &) NRa @ NRs
™= Tr(p) Po=p=7& i

@ n>4:
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Motivation of this talk

The QEE provides information directly on the Ricci tensor. J

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:

{9‘{2 A1 &) NRa @ NRs
™= Tr(p) Po=p=7& i

@ n>4:

It seems reasonable to impose conditions on the Weyl tensor to obtain partial
classification results for QE manifolds.
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Motivation of this talk

The QEE provides information directly on the Ricci tensor. J

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:
R = N1 D R S Rs
@ n>4:
™= Tr(p) Po=p=7& i
R = N1 53] Ra & R © R
@ n=4:
T = Tr(p) Po=p— %g w+ wW-—

It seems reasonable to impose conditions on the Weyl tensor to obtain partial
classification results for QE manifolds.
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Introduction

Motivation of this talk

The QEE provides information directly on the Ricci tensor. J

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal
group into orthogonal modules as follows:
R = N1 D R S Rs
@ n>4:
™= Tr(p) Po=p=7& i
= R ® Ro ® Ry @ R
@ n=4:
T = Tr(p) Po=p— %g w+ wW-—

A manifold is said to be half conformally flat if either W~ =0 or W' = 0. J

It seems reasonable to impose conditions on the Weyl tensor to obtain partial
classification results for QE manifolds.

QE manifolds




Introduction
Motivation of this talk

There are natural conditions that one can impose related to the structure of
the Weyl tensor:

@ W =0: (M,g) is locally conformally flat.
@ W* =0: (M,g) is half conformally flat.
@ divy W = 0: the Weyl tensor is harmonic.
diva W(X,Y,2) = —1C(X,Y,2) =
(Vxp)(Y,Z) = (Vvp)(X, Z) — 5(X()g(Y, Z) = Y(7)g(X, Z)).
@ The Cotton tensor is preserved by a conformal change of the form

~ —f
g=e g . 1
C= C+ZW(-,-7-,Vf)

QE manifolds



Introduction
Motivation of this talk

There are natural conditions that one can impose related to the structure of
the Weyl tensor:

@ W =0: (M,g) is locally conformally flat.
@ W* =0: (M,g) is half conformally flat.
@ divy W = 0: the Weyl tensor is harmonic.

diva W(X,Y,2) = —1C(X,Y,2) =
(Vxp)(Y,Z) = (Vvp)(X, Z) — 5(X()g(Y, Z) = Y(7)g(X, Z)).
@ The Cotton tensor is preserved by a conformal change of the form

~ —f
g=e'g: . 1
C=Ct gW( V)

Aim of the talk

@ To understand the local structure of quasi-Einstein manifolds in
dimension four under “reasonable conditions” on the Weyl tensor.

@ To find examples with some of the conditions above but W # 0.
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Introduction
Basic equations and causal character of Vf

Basic relations:
Q 7+ Af — u||VF|? = nA
Q V7 +2u(3\ — 7)VF +2(u — 1) Ric(VF) = 6VA.
Q R(X,Y,Z,VF)=d\XX)g(Y,Z)—d\Y)g(X,Z)+ (Vyp)(X, 2)
—(Vxp)(Y,Z) + u{df(Y)Hess(X,Z) — df (X)Hest(Y, Z)}.
Q Letp=2u+1. Then
W(X,Y,Z,Vf) = —C(X, Y, Z) + TUIDg062)-drx)s(v.2)}

6
4 1oX.VNe(Y,2)—p(Y.V (X, D)} | n{n(Y,2)df(X)—p(X,Z)df(Y)}
6 2 .
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Basic equations and causal character of Vf

Basic relations:
Q 7+ AF — || VF|P = nA
Q V7 +2u(3\ — 7)VF +2(u — 1) Ric(VF) = 6VA.
Q R(X,Y,Z,VF)=d\XX)g(Y,Z)—d\Y)g(X,Z)+ (Vyp)(X, 2)
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Basic equations and causal character of Vf

Basic relations:
Q 7+ Af — u||VF|? = nA
Q V7 +2u(3\ — 7)VF +2(u — 1) Ric(VF) = 6VA.
Q R(X,Y,Z,VF)=d\XX)g(Y,Z)—d\Y)g(X,Z)+ (Vyp)(X, 2)
—(Vxp)(Y,Z) + u{df(Y)Hess(X,Z) — df (X)Hest(Y, Z)}.
Q Letp=2u+1. Then
W(X,Y,Z,Vf) = —C(X, Y, Z) + TUIDg062)-drx)s(v.2)}

6
+ {p(X,Vf)g(Y,Z)—p(Y,V)g(X,Z)} + n{p(Y,Z)df(X)—p(X,Z)df(Y)}
6 2 :

In general, if (M, g) is QE, Vf may have different causal characters.

We say that a gradient Ricci soliton (M, g, f) is
@ isotropic if ||V|| = 0: the level sets of f are degenerate hypersurfaces.

@ non-isotropic if ||Vf|| # 0: the level sets of f are non-degenerate
hypersurfaces.




Non-isotropic four-dimensional manifolds

Index

© Non-isotropic four-dimensional manifolds
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Non-isotropic 4-dimensional manifolds

Theorem

Let (M, g) be a non-isotropic generalized QE manifold of dimension 4 with
p# —3 and satisfying

@ the Weyl tensor is harmonic and W(-,Vf,-,Vf) =0, or
e Wt =0.

Then (M, g) decomposes locally as a warped product of the form I x4 N, where
N has constant sectional curvature. Hence (M, g) is locally conformally flat.

QE manifolds



Non-isotropic four-dimensional manifolds

Non-isotropic 4-dimensional manifolds

Theorem

Let (M, g) be a non-isotropic generalized QE manifold of dimension 4 with

p# —3 and satisfying

@ the Weyl tensor is harmonic and W(-,Vf,-,Vf) =0, or
e Wt =0.

Then (M, g) decomposes locally as a warped product of the form I x4 N, where
N has constant sectional curvature. Hence (M, g) is locally conformally flat.

Previous works in Riemannian signature:

@ G. Catino; Generalized quasi-Einstein manifolds with harmonic Weyl
tensor, Math. Z. 271 (2012).

@ X. Chen, Y. Wang; On four-dimensional anti-self-dual gradient Ricci
solitons, J. Geom. Anal. 25 2, (2011).

@ G. Catino; A note on four-dimensional (anti-)self-dual quasi-Einstein
manifolds, Differential Geom. Appl., 30 6, (2012).

QE manifolds



Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.
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Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = \%H’ Ei, B, E3}

QE manifolds



Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
W(X,Y,Z,Vf)=—C(X,Y,Z)+ Tn{df(Y)e(X,Z)—df(X)e(Y,Z)}
bl b bl b bl 6

4 11X, VNe(Y,2)—p(Y.V (X, 2)} | n{p(¥,2)df(X)—p(X,Z)dF(Y)}
6 2
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Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
_ Tn{df(Y)g(X,Z2)—df (X)g(Y,Z)
W(X,Y,Z,Vf)=—C(X,Y,Z)+ 1 MeX.2-d(X)s(V.2)}

4 11X, VNe(Y,2)—p(Y.V (X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2
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Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ T"l{df(Y)g(qu)—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y.V (X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

© o V{ generates a totally geodesic distribution.

o The level sets of f are totally umbilical hypersurfaces.
Use previous relations to show that:

Hes/(Ej ;) = (A + 5 (p(V. V)e — 7))g(E:, E;).
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Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ T"l{df(Y)g(qu)—df(X)g(Y,Z)}

n{p(X,VH)eg(¥,Z)=p(Y,Vi)g(X n{p(Y,2)df(X)=p(X,Z)df(Y)}
6 2

- 2
© o Vf generates a totally geodesic distribution.
o The level sets of f are totally umbilical hypersurfaces.
Use previous relations to show that:
Hes¢(E;, E;) = (A + 5 (p(V, V)e — 7))g(Ei, Ey).

Q (M, g) is a twisted product | x., N.
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Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ T"l{df(Y)g(qu)—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y.V (X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

© o Vf generates a totally geodesic distribution.
o The level sets of f are totally umbilical hypersurfaces.
Use previous relations to show that:
Hes¢(Ei, E5) = (A + & (p(V, V)e — 7))g(E:, E))-
Q (M, g) is a twisted product | x., N.
@ Since p(V, Ei) =0, the twisted product reduces to a warped product of

the form
(M,g) = (I x N,edt® + (t)*gn)

QE manifolds



Non-isotropic four-dimensional manifolds

Sketch of the proof. Non isotropic case.

@ Choose a local orthonormal frame {V = H%H’ Ei, B, E3}

@ VT is an eigenvector of the Ricci operator
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ T"l{df(Y)g(qu)—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y.V (X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

© o Vf generates a totally geodesic distribution.
o The level sets of f are totally umbilical hypersurfaces.
Use previous relations to show that:
Hes¢(Ei, E5) = (A + & (p(V, V)e — 7))g(E:, E))-
Q (M, g) is a twisted product | x., N.
@ Since p(V, Ei) =0, the twisted product reduces to a warped product of

the form
(M,g) = (I x N,edt® + (t)*gn)

@ Since the Weyl tensor is harmonic, (N, gn) is Einstein and of dimension 3.
Hence (M, g) is locally conformally flat.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Index

© Isotropic four-dimensional manifolds
@ Isotropic QE manifolds of Lorentzian signature
@ Isotropic QE manifolds of neutral signature
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Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Isotropic 4-dimensional manifolds: the Lorentzian setting

Theorem

Let (M, g) be an isotropic generalized QE Lorentzian manifold of dimension 4
with p# —3. If

@ the Weyl tensor is harmonic, and
e W(,-,-,Vf)=0,

then
@ \=0, and

@ (M, g) is a pp-wave, i.e., (M, g) is locally isometric to R? x R? with
metric

g = 2dudv + H(u, x1,xz)du2 + dx? + dx3.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Sketch of the proof. Isotropic Lorentzian case.

@ VT is an eigenvector of the Ricci operator for the eigenvalue A

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Sketch of the proof. Isotropic Lorentzian case.

@ Vf is an eigenvector of the Ricci operator for the eigenvalue A
@ Choose a local pseudo-orthonormal frame {Vf, U, E;, E;}

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Sketch of the proof. Isotropic Lorentzian case.

@ VT is an eigenvector of the Ricci operator for the eigenvalue A
@ Choose a local pseudo-orthonormal frame {Vf, U, E1, E;}

© Compute the Ricci operator and the Hessian operator:
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ Tﬂ{df(Y)g(X«Zé—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y,.Veg(X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

hess =

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Sketch of the proof. Isotropic Lorentzian case.

1S an eigenvector ot the Ricci operator tor the eigenvalue

Q Vri ig f the Ricci for the eig lue A

@ Choose a local pseudo-orthonormal frame {Vf, U, E1, E;}

© Compute the Ricci operator and the Hessian operator:
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ Tﬂ{df(Y)g(X«Zé—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y,.Veg(X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

hess =

© D =span{Vr} is a null parallel distribution: Walker manifold.

QE manifolds
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Sketch of the proof. Isotropic Lorentzian case.

1S an eigenvector ot the Ricci operator tor the eigenvalue

Q Vri ig f the Ricci for the eig lue A

@ Choose a local pseudo-orthonormal frame {Vf, U, E1, E;}

© Compute the Ricci operator and the Hessian operator:
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ Tﬂ{df(Y)g(X«Zé—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y,.Veg(X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

hesf =

© D =span{Vr} is a null parallel distribution: Walker manifold.
Q@ 0=R(E,U,Vf E)=3 = A=0.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Sketch of the proof. Isotropic Lorentzian case.

1S an eigenvector ot the Ricci operator tor the eigenvalue

Q Vri ig f the Ricci for the eig lue A

@ Choose a local pseudo-orthonormal frame {Vf, U, E1, E;}

© Compute the Ricci operator and the Hessian operator:
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ Tﬂ{df(Y)g(X«Zé—df(X)g(Y,Z)}

4 11X, VNe(Y,2)—p(Y,.Veg(X, D)} | n{p(¥,2)df(X)—p(X,Z)df(Y)}
6 2

hesf =

© D =span{Vr} is a null parallel distribution: Walker manifold.
Q@ 0=R(E,U,Vf E)=3 = X=0.

Q R(VFf,VFt,.,-) =0 and the Ricci tensor is isotropic, so (M, g) is a
pp-wave.

QE manifolds



Isotropic four-dimensional manifolds Isotropic QE manifolds of Lorentzian signature

Isotropic Lorentzian pp-waves

Locally conformally flat quasi-Einstein pp-waves

A locally conformally flat pp-wave is locally isometric to R? x R? with metric

g = 2dudv + H(u,xl,xz)du2 + dx12 + dx22

where H(u, x1,x2) = a(u)(x + x3) + b1(u)x1 + b2 (u)x2 + c(u), and it is
isotropic QE for f a function of u satisfying f”/(u) — uf’(u)® — 2a(u) = 0.

—, E. Garcia-Rio and S. Gavino-Fernandez; Locally conformally flat Lorentzian quasi-Einstein manifolds.

Monatsh. Math. 173 (2014), 175-186.

QE manifolds
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Isotropic Lorentzian pp-waves

Locally conformally flat quasi-Einstein pp-waves

A locally conformally flat pp-wave is locally isometric to R? x R? with metric

g = 2dudv + H(u,xl,xz)du2 + dxl2 + dx22

where H(u, x1,x2) = a(u)(x + x3) + b1(u)x1 + b2 (u)x2 + c(u), and it is
isotropic QE for f a function of u satisfying f”/(u) — uf’(u)® — 2a(u) = 0.

—, E. Garcia-Rio and S. Gavino-Fernandez; Locally conformally flat Lorentzian quasi-Einstein manifolds.

Monatsh. Math. 173 (2014), 175-186.

Non-locally conformally flat quasi-Einstein pp-waves

Let (M, g) be a pp-wave with W # 0, the following statements are equivalent:

@ (M, g) is isotropic generalized quasi-Einstein,
@ W is harmonic,
@ A H = ¢(u).
If any of these conditions holds, then W(-,-,-,Vf) =0 and f is given by:
f(u) + pf'(u)® - % (%(u, x1,x2) + %(u,xl,xzo =0
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Index

© Isotropic four-dimensional manifolds
@ Isotropic QE manifolds of Lorentzian signature
@ Isotropic QE manifolds of neutral signature
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of
signature (2,2), with o # —%. Then (M, g) is a Walker manifold with a
2-dimensional null parallel distribution.
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Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of
signature (2,2), with o # —%. Then (M, g) is a Walker manifold with a
2-dimensional null parallel distribution.
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of
signature (2,2), with o # —%. Then (M, g) is a Walker manifold with a
2-dimensional null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

a(x1, x2,x3,xa) c(x1,x2,x3,x) 1 0

c(x1,x2,x3,xa) b(x1,x2,x3,xa) 0 1

gW(X13X27X3aX4): 1 0 0 0
0 1 0 0

QE manifolds
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Sketch of the proof. Isotropic case.
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Sketch of the proof. Isotropic case.

© Choose a local appropriate frame of null vectors: {Vf,u,v,w}

The self-dual condition expresses as:

0 01 O
0o o001 W(Vf,v,z,t) = W(uw,zt),
8= 1 0 0 O W(U,V,Z,t) — 07
01 0 O
W(Vf,W,Z,t) - 0.
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Sketch of the proof. Isotropic case.

© Choose a local appropriate frame of null vectors: {Vf,u,v,w}

The self-dual condition expresses as:

0 01 O
0o o001 W(Vf,v,z,t) = W(uw,zt),
8= 1 0 0 O W(U,V,Z,t) — 07
01 0 O
W(Vf,W,Z,t) - 0.

n{df(Y)g(X,Z)—df(X)g(Y,Z
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ 1{df(Y)e( ()i (X)e(Y,2)}

4 1{oX.VNe(Y,2)=p(Y.Ve(X,. D)} | n{p(Y,2)df(X)=p(X,Z)df(Y)}
6 2
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Sketch of the proof. Isotropic case.

© Choose a local appropriate frame of null vectors: {Vf,u,v,w}

The self-dual condition expresses as:

0 01 0
O 0 0 1 W(Vfa v,z, t) = W(U, w,z, t)7
€1 100 0 W(u,v,z,t) = 0,
0 1 00
W(Vf,w,z,t) = 0.
_ rn{df(Y)g(X,2)—df(X)g(¥,2)}
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ ™ S €
+n{P(X,Vf)g(Y,Z)—p(Y,Vf)g(X’Z)} + n{p(Y,Z)df(X)—p(X,2)df(Y)}
6 2
@ Use these relations to show that A = Z and the Ricci operator has the
4
form:
A0 a ¢
. 0 AN ¢ b
Ric=119 0 a o0
0 0 0 X
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Sketch of the proof. Isotropic case.

© Choose a local appropriate frame of null vectors: {Vf,u,v,w}

The self-dual condition expresses as:

0 01 0
O 0 0 1 W(Vfa v,z, t) = W(U, w,z, t)7
€1 100 0 W(u,v,z,t) = 0,
0 1 00
W(Vf,w,z,t) = 0.
_ rn{df(Y)g(X,2)—df(X)g(¥,2)}
W(X,Y,Z,Vf)=—-C(X,Y,Z)+ ™ S €
+n{P(X,Vf)g(Y,Z)—p(Y,Vf)g(X’Z)} + n{p(Y,Z)df(X)—p(X,2)df(Y)}
6 2
© Use these relations to show that A = 7 and the Ricci operator has the
form:
A0 a ¢
. 0 A ¢ b
Ric=119 0 a o0
0 0 0 X
© D =span{Vf,u} is a null parallel distribution, so (M, g) is a Walker
manifold.

QE manifolds
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Theorem

Let (M, g) be an isotropic generalized-quasi Einstein manifold of signature
(2,2), with o # —%. Then (M, g) is a Walker manifold with a 2-dimensional
null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

a(X17X27X3,X4) C(X1,X2,X3,X4) 1 0

c(x1,x2,x3,%) b(x1,x2,x3,%) 0 1

gw(x1,x2,x3,xs) = 1 0 0 0
0 1 0 0

A\

There are several families of Walker manifolds that will play a role:
@ Deformed Riemannian extensions,

@ Modified Riemannian extensions.

QE manifolds
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Riemannian extensions

Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 3 1952.
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Riemannian extensions

go(X,YS) = —(DxY + Dy X)
(T"%,80) I local coordinates (X1, X2, X1/, Xa1 ):
l” —2xqTh —2xT3;  —2xy T —2xT3, 1 0
Ty — 2% T2,  —2xp/T3y —2x0T3, 0 1
(ZD) gp = X1 121 X2l 12 X1 220 X2l 22 0 0
0 1 0 0
Parallel null
distribution:
ker 7y
Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 3 1952.
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Riemannian extensions

go(XE, Y) = —u(DxY + Dy X)
(T"%,80)  In local coordinates (X1, X2, X1/, Xa1 ):
l” —2xq: T3y — 2% T3, —2xpTj, —2xT3, 1 0
—2xq/ Tl — 2x T3y, —2xyT3y —2x0T3, 0 1
(%, D) gp = X1 121 X2/l 12 X1 220 X2/ 1 22 0 0
0 1 0 0
Parallel null o (T*%,gp) self-dual.
distribution: . L B
ker 7. @ (T"%, gp) Einstein & pg,, = 0.
@ (T*XL, gp) locally conformally flat < (X, D) projectively flat.
Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 3 1952.
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Riemannian extensions

® is a (0,2)-symmetric tensor field on ©

g0.6(XC, YY) = —u(DxY + Dy X) + 7" ®

T .
( 180.) In local coordinates:
l” —2x T — 2xp T2 + &1y —2x/ T, —2x0 T3, +d1n 1 0
(£, D, ®) g — —2x Tl — 2% T3y + Do —2x/ T3y — 2% T35 + P2 0 1
1 0 0 O
0 1 0 0
Parallel null @ (T*L, gpoe) self-dual.
distribution: . . . D
ker . @ (T"%, gp,0) Einstein & pg,, = 0.
@ (T'%, gp,o) locally conformally flat = (X, D) projectively flat.
Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.
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Deformed Riemannian extensions

® is a (0, 2)-symmetric tensor field on ©

g0.0(XC, Y) = —(DxY + Dy X) + n*d

T .
( 180.0) In local coordinates:
l” —2xy T — 2% T3 + ®yp —2xpT1, — 2% 3 +d1a 1 0
(. D, ®) g — —2x Tl — 2% T3y + o1 —2xy/ T3y — 2x T35 + 2 0 1
1 0 0 O
0 1 0 0
Parallel null @ (T*L, gpoe) self-dual.
distribution: . . . D
ker . @ (T"%, gp,0) Einstein & pg,, = 0.
@ (T'%, gp,o) locally conformally flat = (X, D) projectively flat.
Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Quasi-Einstein manifolds with \ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature (2, 2)
with p # —3 which is not Ricci flat. Then (M, g) is locally isometric to a
deformed Riemannian extension (T*X, gp,4) of an affine surface (X, D) that

satisfies the affine quasi-Einstein equation:

Hes? +2p? — pdf @ df =0 for some f € C>°(X) and p € R

and, moreover, f = 7*f and A = 0.
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Quasi-Einstein manifolds with \ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature (2, 2)
with p # —3 which is not Ricci flat. Then (M, g) is locally isometric to a
deformed Riemannian extension (T*X, gp,4) of an affine surface (X, D) that

satisfies the affine quasi-Einstein equation:

Hes? +2p? — pdf @ df =0 for some f € C>°(X) and p € R

and, moreover, f = 7*f and A = 0.

Remarks.
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Quasi-Einstein manifolds with \ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature (2, 2)
with p # —3 which is not Ricci flat. Then (M, g) is locally isometric to a
deformed Riemannian extension (T*X, gp,4) of an affine surface (X, D) that

satisfies the affine quasi-Einstein equation:

Hes? +2p? — pdf @ df =0 for some f € C>°(X) and p € R

and, moreover, f = 7*f and A = 0.

Remarks.

@ There exist examples of self-dual QE manifolds which are NOT locally
conformally flat in dimension four.
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Isotropic half conformally flat QE manifolds of signature (2, 2)

Quasi-Einstein manifolds with \ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature (2, 2)
with p # —3 which is not Ricci flat. Then (M, g) is locally isometric to a
deformed Riemannian extension (T*X, gp,4) of an affine surface (X, D) that

satisfies the affine quasi-Einstein equation:

Hes? +2p? — pdf @ df =0 for some f € C>°(X) and p € R

and, moreover, f = 7*f and A = 0.

Remarks.

@ There exist examples of self-dual QE manifolds which are NOT locally
conformally flat in dimension four.

@ The previous result suggest the new concept of affine quasi-Einstein
manifold:
(N, D) is quasi-Einstein if there exist a function f in N satisfying the
affine quasi-Einstein equation

Hes? +2p5D — udf@ df = 0.

QE manifolds
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Sketch of the proof. Isotropic case. A\ constant

@ We use the previous pseudo-orthonormal frame {Vf, u, v, w} where

A 0 a ¢

. 0 XN ¢ b
Re=1 10 0 a 0
0 0 0 A\
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Sketch of the proof. Isotropic case. A\ constant

@ We use the previous pseudo-orthonormal frame {Vf, u, v, w} where

Ric =

O O oo
o O O o
OO n W
oo T 0

@ We use that A\ = const. to see that A =0, 7 = 0 and Ric(Vf) = 0.
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Sketch of the proof. Isotropic case. A\ constant

@ We use the previous pseudo-orthonormal frame {Vf, u, v, w} where

Ric =

O O oo
o O o o
OO n v
oo T 0

@ We use that A\ = const. to see that A =0, 7 = 0 and Ric(Vf) = 0.

© D =span{Vf,u} is a null parallel distribution such that Ric(D) = 0 and
Ric®> = 0.
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Sketch of the proof. Isotropic case. A\ constant

@ We use the previous pseudo-orthonormal frame {Vf, u, v, w} where

Ric =

O O oo
o O o o
OO n v
oo T 0

@ We use that X\ = const. to see that A =0, 7 = 0 and Ric(Vf) = 0.

© D =span{Vf,u} is a null parallel distribution such that Ric(D) = 0 and
Ric®> = 0.

© We see that R(-,D)D = 0, this shows that (M, g) is indeed a deformed
Riemannian extension.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.
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Sketch of the proof. Isotropic case. A\ constant

@ We use the previous pseudo-orthonormal frame {Vf, u, v, w} where

Ric =

O O oo
o O o o
OO n v
oo T 0

@ We use that X\ = const. to see that A =0, 7 = 0 and Ric(Vf) = 0.

© D =span{Vf,u} is a null parallel distribution such that Ric(D) = 0 and

Ric®> = 0.

© We see that R(-,D)D = 0, this shows that (M, g) is indeed a deformed
Riemannian extension.

o

We work in local coordinates and check that the condition for a deformed
Riemannian extension to be quasi-Einstein is equivalent to the condition
for the affine surface to be affine quasi-Einstein.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 5 1954.
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Isotropic four-dimensional manifolds

Isotropic half conformally flat QE manifolds of signature (2, 2)

Generalized Quasi-Einstein manifolds (A non-constant)

Let (M, g) be an isotropic self-dual generalized quasi-Einstein manifold of
signature (2,2) with p # 1 which is not Ricci flat. If X is not constant then
(M, g) is locally isometric to a modified Riemannian extension (T*X, gp,o,T,1d)

of an affine surface (X, D) with:
o = %ef(Hes?D +2pP — pdf @ df),
o T=_Ce'ld,

o A=3Ce".

QE manifolds
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Modified Riemannian extensions

® is a (0,2)-symmetric tensor field on ©

(T*zagD,‘I’)
gpo (XS, YC) = —u(DxY + DyX) + %0
lﬂ In local coordinates:
(2,D, ) gu g2 1 0
. g2 g2 0 1
e =1 1 0 0 0
Parallel null 0 1 0 0
distribution: ;
ker . gi=-2> xulf+d;
K

QE manifolds
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Modified Riemannian extensions

® is a (0,2)-symmetric tensor field on ©

T and S are (1, 1)-tensor fields on X

(T*z7gD7®) c c
gD,q;’T‘s(X ,Y ):I,TOLS—L(DxY+DyX)+7T*¢
lﬂ In local coordinates:

(Z,D,CD) 811 812 1 0
| g2 g2 0 1
EbeTS=1 1 0 0 0
Parallel null 0 1 00

distribution: 1

e, &= 2 S k(TS + IS — 2 e+ 0

r,s k
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Modified Riemannian extensions

® is a (0,2)-symmetric tensor field on ©

T and S are (1, 1)-tensor fields on X

(T*ZagD,‘I’)
l gp.o.7d(XC, YE) = 1T ovld—u(DxY + Dy X) + n*d
In local coordinates:
>,D,¢
(X,D, ) g1 ge 10
| g2 g2 0 1
8D,6,Td = 1 0 0 0
Parallel null 0 1 00
distribution: 1
ker 7. g =5 S xoxa (I8 +T76) =23 s + &
r,s k
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Modified Riemannian extensions

® is a (0,2)-symmetric tensor field on ©

T and S are (1, 1)-tensor fields on X

(T*ZagD,‘I’)
l gp.o.7d(XC, YE) = 1T ovld—u(DxY + Dy X) + n*d
In local coordinates:
>.D,o
(X,D, ) g1 ge 10
| g2 g2 0 1
&D,o,T,ld = 1 0 0 0
Parallel null 0 1 0 O
distribution: 1
ker 7. g =5 S xox (TI8 + T/87) =2 xieTh + &y
r,s k

Self—dual Walker manifolds (E. Calvifio-Louzao, E. Garcia-Rio, R. Vézquez—Lorenzo)

A four-dimensional Walker metric is self-dual if and only if it is locally isometric
to the cotangent bundle (T*X, g), where

g=X(¢ldotld) +¢Tovld+gp + 7" ®
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Methods to construct examples

Method to construct examples with constant \:

Method to construct examples with non-constant \:
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Method to construct examples with constant \:
@ Take any affine surface (X, D).
@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Method to construct examples with non-constant \:
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Methods to construct examples

Method to construct examples with constant \:
@ Take any affine surface (X, D).
@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Then (T*X, gp,o) is a self-dual QE manifold with A =0 and f = T f. J

Method to construct examples with non-constant \:
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Methods to construct examples

Method to construct examples with constant \:
@ Take any affine surface (X, D).
@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Then (T*X, gp,o) is a self-dual QE manifold with A =0 and f = T f. J

Method to construct examples with non-constant \:
@ Take any affine surface (X, D).
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Methods to construct examples

Method to construct examples with constant \:
@ Take any affine surface (X, D).
@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Then (T*X, gp,o) is a self-dual QE manifold with A =0 and f = T f. J

Method to construct examples with non-constant \:
@ Take any affine surface (X, D).
@ Take any non-constant function f on ¥.
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Methods to construct examples

Method to construct examples with constant \:
@ Take any affine surface (X, D).

@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Then (T*X, gp,o) is a self-dual QE manifold with A =0 and f = T f. J

Method to construct examples with non-constant \:
@ Take any affine surface (X, D).
@ Take any non-constant function f on ¥.

© Consider:

gef(Hes? +2p2 —pdf@df)

f=rn'f, T=Ce'ld  and o=

for a constant C.
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Methods to construct examples

Method to construct examples with constant \:
@ Take any affine surface (X, D).

@ Solve the affine quasi-Einstein equation:

Hes? +2pf — pdf ® df = 0.

Then (T*X, gp,o) is a self-dual QE manifold with A =0 and f = T f. J

Method to construct examples with non-constant \:
@ Take any affine surface (X, D).
@ Take any non-constant function f on ¥.

© Consider:

f=n"f, T=Ce'ld, and &= %J(Hes? +2pP —pdfedf)

for a constant C.

D,»,T,ld, [ ) is a self-dual generalized QE manifold with

Then (T*X%, g
r=23Ce ",

A=

1
4 2

QE manifolds
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The affine quasi-Einstein equation

For an affine manifold (N, D) consider the QEE
Hes? +2pP — pdf @ df = 0.
Consider the change of variable f = e~ 24 to transform the equation into
Hesr = uf ps.
Let E(u) be the space of solutions for the affine QEE.

First results for the affine QEE.

If f € E(p) then
Q If X is Killing, then Xf € E(p).
Q 1 € C>®(N) and, if N is real analytic, then f is real analytic.
© If f(p) =0 and df(p) =0, then f =0 near p.
Q dim(E(n)) <dimN + 1.
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