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Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



Mass or energy?
What is it good for anyway?

1 Total energy is useful in one-dimensional classical
mechanics

2 But less so for higher dimensional gravitating systems
(many body Keppler problem: Xia’s finite-time ejections to
infinity)

3 energy and mass are not always the same
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Mass or energy?
What is it good for anyway? some good news

in the asymptotically flat case

1 Mass, momentum, etc., arise as obstructions in gluing
problems

2 m ≥ 0 for AF metrics =⇒ existence (Schoen 1984, all dim)

and compactness (Khuri, Marques, Schoen 2018, dim
n ≤ 24, sharp)

for the Yamabe problem
3 m ≥ 0 for AF metrics =⇒ suitably regular static black holes

are Schwarzschild in all dimensions
4 Hollands and Wald (2016): variational identities involving

total mass for AF metrics can be used to prove existence
of instabilities in “black strings”
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How to define mass
Spacetime methods

1 Spacetime variational methods: “Noether charge” à la
Wald (∼ 1990) ≡ geometric Hamiltonian methods à la
Kijowski-Tulczyjew (1979)

: “H(∂t , {t = 0})” is the energy
2 Hamiltonians for asymptotic symmetries: If g suitably

approaches a background g with a Killing vector field X ,
then the Hamiltonian is

H (X ,S ) :=
1
2

∫
∂S

(
Uνλ − Uνλ

∣∣
g=g

)
dSνλ , (1)

Uνλ = UνλβXβ − 1
8π

√
| det g|gα[νδ

λ]
β ∇αXβ , (2)

Uνλβ = 2| det g|
16π
√
| det g|

gβγ∇κ
(
e2gγ[λgν]κ

)
, (3)

where ∇ is the covariant derivative of gµν and

e2 ≡ det g
det g

. (4)
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Wald (∼ 1990) ≡ geometric Hamiltonian methods à la
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Asymptotically locally hyperbolic (ALH) metrics
Asymptotically hyperbolic if (Nn−1, h̊) is the unit round sphere

g = `2x−2
(

dx2 + (1− k
4 x2)2h̊ + xnµ

)
+ o(xn−2)dx idx j ,

h̊ = h̊AB(xC)dxAdxB , µ = µAB(xC)dxAdxB ,

` > 0 is a constant related to Λ, h̊ is a Riemannian metric on
Nn−1 with scalar curvature

R [̊h] = (n − 1)(n − 2)k , k ∈ {0,±1} . (5)

The mass aspect function is

θ := trh̊µ

uniquely defined unless the conformal infinity is a round sphere
The total mass is

m0 = cn

∫
Nn−1

θ , mi = cn

∫
Sn−1

θx i

(defines a “Minkowskian” vector on a sphere).
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Hyperbolic mass (also known as holographic energy,
cf. “holographic stress-energy tensor”).

•We only have satisfactory understanding of mass and related
invariants in the asymptotically Euclidean setting. (Spectacular
progress by Schoen and Yau 2017.)
• Asymptotically hyperbolic setting: Positivity? Spin structure or
other topological restrictions? Sharp and insightful inequalities
in higher dim? e.g., on spin manifolds with spherical infinity, in

three space-dimensions

E2

− |~p |2

≥

−Λ/3
(
|~c |2 +

|~j |2

+ 2 |~c ×~j |
)

, (6)

where~j is the total angular momentum

and ~c the centre of
mass

.
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Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



What backgrounds g?

What are the spacelike manifolds S we are interested in?

• For simplicity, assume vacuum Einstein equations throughout:

R(g)µν = cnΛgµν (7)

• This talk: mostly Λ < 0
•What kind of spacelike hypersurfaces are compatible with (7)
when Λ 6= 0
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Constraint equations, cosmological constant Λ
Does the curvature scalar know about Λ? (ρ = jk = 0 in vacuum)

assume trK to be
constant

• The scalar constraint equation:

R(g) = 16πρ+ |K |2 − (trK )2 + 2Λ (8)

= 16πρ︸ ︷︷ ︸

≥0?

+ |K̂ |2−(n − 1)

n
(trK )2 + 2Λ︸ ︷︷ ︸

=:2Λ̃

,

where ρ is the energy density of matter fields, R(g) is the scalar
curvature of the space metric

, and K̂ is the trace-free part of
the extrinsic curvature tensor K .
•B You can fool around with Λ by playing with the trace of K

K → K + ag =⇒ Λ̃→ Λ̃− (n − 1)

2n
(2a trK + a2)

• This is compatible with the vector constraint equation:

Di(K ik − trK g ik ) = 8π jk
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Constraint equations, cosmological constant Λ

PTC, Tod 2007

• Corollary: The Trautman-Bondi mass mTB is ////the ///////same////as

related to

the hyperbolic mass

(B pure trace K + constraint
equations + Λ = 0 =⇒ no gravitational radiation B)

• Corollary: positivity theorems for asymptotically hyperbolic
initial data (Λ < 0) translate to angular momentum bounds with
Λ = 0

on CMC hypersurfaces S when there is no-radiation at
the conformal boundary of S

mTB ≥
|trK |

3
|~J| , mTB ≥

|trK |
3
|~c| ,

where ~J is the total angular momentum and ~c the centre of
mass.
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Asymptotically Anti-de Sitter metrics

PTC, Barzegar, Nguyen (2018), space-dimension n Bizoń and Rostworowski 2011,
Moschidis 2017

• Asymptotically anti-de Sitter metrics:

g→r→∞ g = −V 2dt2 + V−2dr2 + r2dΩ2 , V = r2 + 1 .

• Elementary positive energy theorem: in a suitable gauge, for
h := g − g small, (E := H(∂t , {t = 0}))

E

≥
∫

M

[
R − R +

n − 2− ε
8n

|Dtr h|2g +
1− ε

4
|Dĥ|2g

−1 + ε

1
|ĥ|2g

]
V
√

det g

≥
∫

M

[
R − R +

n − 2
16n

|Dh|2g
]
V .

• but no stability: arbitrarily small generic perturbations of initial
data for the spherically symmetric Einstein-scalar field
equations produce arbitrarily small black holes (?)
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|Dĥ|2g

−1 + ε

1
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Asymptotically Anti-de Sitter metrics
Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC,
Barzegar, Höerzinger 2017), space-dimension n

g→r→∞ g = −V 2dt2 + V−2dr2 + r2dΩ2 , V = r2 + 1 .

• For any Killing vector X of g we have

Hb (X ,S ) =
1

16(n − 2)π
lim

R→∞

∫
t=0,r=R

X νZ ξWαβ
νξdSαβ ,

where Wαβ
νξ is the Weyl tensor of g and Z = r∂r is the dilation

vector field

• Riemannian version, asymptotically hyperbolic Riemannian
metrics g, Ri

j is the Ricci tensor of g:

Hb (X ,S ) = − 1
16(n − 2)π

lim
R→∞

∫
r=R

X 0V Z j(Ri
j −

R
n
δi

j )dSi .
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Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



Asymptotically Anti-de Sitter metrics
Komar-type formula (PTC, Barzegar, Höerzinger 2017), space-dimension n

g→r→∞ g = −V 2dt2 + V−2dr2 + r2dΩ2 , V = r2 + 1 .

• If X is a Killing vector of both g and g we have

Hb (X ,S ) = lim
R→∞

{
n − 1

16(n − 2)π

∫
r=R

X [α;β]dSαβ

− Λ

4(n − 2)(n − 1)nπ

∫
r=R

XαZβdSαβ

}
,

where Λ < 0 is the cosmological constant.
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Other asymptotic backgrounds: Kottler-Birmingham
metrics

Lee & Neves, n = 3, 2015

Static vacuum solutions of Einstein equations with a negative cosmological constant

gm = −V 2
mdt2 + V−2

m dr2 + r2hκ , Vm = r2 + κ− 2m
rn−2 .

where hκ is a t- and r -independent Einstein metric on a
(n − 1)-dim compact manifold, with scalar curvature
R(h) = (n − 1)(n − 2)κ.

The mass of gm relative to g := g0 is proportional to m
The manifolds are singular unless the Vm’s have positive
zeros, which then correspond to black hole horizons
If κ ≥ 0 the mass is positive, but if κ = −1 then

m ≥ −(n − 1)(n−3)/2

(n + 1)(n−1)/2 . (9)

Question: Is (9) an absolute lower bound for vacuum black
holes? yes for solutions with a constant negative mass aspect
function

Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



Other asymptotic backgrounds: Kottler-Birmingham
metrics

Lee & Neves, n = 3, 2015

Static vacuum solutions of Einstein equations with a negative cosmological constant

gm = −V 2
mdt2 + V−2

m dr2 + r2hκ , Vm = r2 + κ− 2m
rn−2 .

where hκ is a t- and r -independent Einstein metric on a
(n − 1)-dim compact manifold, with scalar curvature
R(h) = (n − 1)(n − 2)κ.

The mass of gm relative to g := g0 is proportional to m

The manifolds are singular unless the Vm’s have positive
zeros, which then correspond to black hole horizons
If κ ≥ 0 the mass is positive, but if κ = −1 then

m ≥ −(n − 1)(n−3)/2

(n + 1)(n−1)/2 . (9)

Question: Is (9) an absolute lower bound for vacuum black
holes? yes for solutions with a constant negative mass aspect
function
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Horowitz-Myers Instantons

Woolgar’s version of the Horowitz-Myers conjecture

gm = −V 2
mdt2///////// V 2

mdθ2+V−2
m dr2+r2(dθ2////−dt2+h′0) , Vm = r2+κ///− 2m

rn−2 .

where h′0 is a t-, θ-, and r -independent Ricci flat metric on a
(n − 3)-dim compact manifold.

Naked singularity for m < 0.

Complete cusp at infinity when m = 0.
For m > 0 the zero-sets of Vm are smooth totally-geodesic
submanifolds (“core geodesics” in n = 3) when the period
of θ is appropriately chosen, depending upon m.
The mass relative to g0 can be arbitrarily negative,
proportional to the negative of m.
Conjecture: these are local minima of energy.
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Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



Horowitz-Myers Instantons

Woolgar’s version of the Horowitz-Myers conjecture

gm =

−V 2
mdt2/////////

V 2
mdθ2+V−2

m dr2+r2(

dθ2////

−dt2+h′0) , Vm = r2

+κ///

− 2m
rn−2 .

where h′0 is a t-, θ-, and r -independent Ricci flat metric on a
(n − 3)-dim compact manifold.

Naked singularity for m < 0.
Complete cusp at infinity when m = 0.
For m > 0 the zero-sets of Vm are smooth totally-geodesic
submanifolds (“core geodesics” in n = 3) when the period
of θ is appropriately chosen, depending upon m.
The mass relative to g0 can be arbitrarily negative,
proportional to the negative of m.

Conjecture: these are local minima of energy.
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Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics??????

h = g − g, ĥ = trace-free part of h:

m =

∫
M

[
(R − R)V +

(n + 2
8n
|D φ|2g +

1
4
|Dĥ|2g

−1
2

ĥi`ĥjmR`mij −
n + 2

2n
φĥijR ij +

n(n2 − 4)

8n2 φ2

− 1
2
(
|ψ̌|2g − ψ̌

iDiφ)
)

V +

(
hk

i ψ̌
i +

1
2
φψ̌k

)
DkV

+ (O
(
|h|3g

)
+ O

(
|h|g |Dh|2g

)
)V

+ O
(
|h|2g |Dh|g

)
|DV |g

]√
det g . (10)

////////gauge////////terms //////error ////////terms ??? Sharper Poincaré inequality?
Incidentally: Uniqueness theorems for the Horowitz-Myers
instanton by Galloway and Woolgar, and by M. Anderson

Piotr T. Chruściel The mass of asymptotically hyperbolic manifolds



Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics??????
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|Dĥ|2g

−1
2
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ĥi`ĥjmR`mij −
n + 2

2n
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Reminder: Asymptotically locally hyperbolic (ALH)
metrics
Asymptotically hyperbolic if (Nn−1, h̊) is the unit round sphere

g = `2x−2
(

dx2 + (1− k
4 x2)2h̊ + xnµ

)
+ o(xn−2)dx idx j ,

h̊ = h̊AB(xC)dxAdxB , µ = µAB(xC)dxAdxB ,

` > 0 is a constant related to Λ, h̊ is a Riemannian metric on
Nn−1 with scalar curvature

R [̊h] = (n − 1)(n − 2)k , k ∈ {0,±1} . (11)

The mass aspect function is

θ := trh̊µ

uniquely defined unless the conformal infinity is a round sphere
The total mass is

m0 = cn

∫
Nn−1

θ , mi = cn

∫
Sn−1

θx i

(defines a “Minkowskian” vector on a sphere).
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A positive mass theorem without spin hypotheses
PTC, Galloway, Nguyen, Paetz, 2018

Theorem

Let (Mn,g), 4 ≤ n ≤ 7, be a Cn+5–conformally compactifiable
asymptotically locally hyperbolic (ALH) Riemannian manifold
diffeomorphic to [r0,∞)× Nn−1 with a compact boundary
N0 := {r0} × Nn−1 and with well defined total mass. Suppose
that:

1 The mean curvature of N0 satisfies H < n − 1, where H is
the divergence Dini of the unit normal ni pointing into M.

2 The scalar curvature R = R[g] of M satisfies
R ≥ −n(n − 1).

3 Either (N, h̊) is a flat torus, or (N, h̊) is a nontrivial quotient
of a round sphere.

Then the mass of (Mn,g) is nonnegative, m ≥ 0.
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1 The mean curvature of N0 satisfies H < n − 1, where H is
the divergence Dini of the unit normal ni pointing into M.

2 The scalar curvature R = R[g] of M satisfies
R ≥ −n(n − 1).

3 Either (N, h̊) is a flat torus, or (N, h̊) is a nontrivial quotient
of a round sphere.

Then the mass of (Mn,g) is nonnegative, m ≥ 0.
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Mass aspect deformation theorem
PTC, Galloway, Nguyen, Paetz, 2018

Theorem

Let (Mn,g) be an ALH manifold, n ≥ 4. For all ε > 0 there
exists a metric gε which coincides with g outside of an
ε-neighborhood of the conformal boundary at infinity, satisfies
R[gε] ≥ R[g], such that

1 gε has a pure monopole-dipole mass aspect function Θε if
(Nn−1, h̊) is conformal to the standard sphere, and has
constant mass aspect function otherwise;

2 the associated energy-momentum satisfies{
limε→0 mε

0 = m0 , mε
i = mi , if (Nn−1, h̊) round Sn−1;

limε→0 mε = m , otherwise.
(12)
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