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» Optimal regularity of metrics with bounded curvature
Local analysis and possibly large curvature
Construction of a “canonical” CMC foliation
Existence of local CMC-spatially harmonic coordinates

» Dynamics of self-gravitating massless/massive matter fields
Global analysis near Minkowski spacetime
Construction of Euclidian-Hyperboloidal foliations
Small data global-in-time existence

— Weighted Sobolev spaces: regularity of the metric, decay
conditions

— Key challenge: quantitative estimates, uniform with respect to the
relevant parameter (curvature scale, time variable)



1. Canonical foliations of Einstein spacetimes
with bounded curvature

Joint work with Binglong Chen (Guangzhou)

1.1 Objective

Minimal regularity required to control the geometry of the spacetime
» Solely a bound on the curvature
» Fully geometric estimates



1. Canonical foliations of Einstein spacetimes
with bounded curvature

Joint work with Binglong Chen (Guangzhou)
1.1 Objective

Minimal regularity required to control the geometry of the spacetime
» Solely a bound on the curvature
» Fully geometric estimates
» Three steps in our analysis:

> injectivity radius of an observer
» construction of a canonical CMC foliation
» local canonical foliations and coordinates of an observer

» Optimal regularity theory in W?2P for all p < 4+



1.2 Injectivity radius of an observer

(M.,g,p, T,) : time-oriented, pointed, Lorentzian manifold
(p, Tp) : (infinitesimal) observer
T, future-oriented, unit time-like vector

Exponential map
» Exponential map: exp, : Bg,(0,i0) = T,M — Bg(p,io) = M
» Defined in a neighborhood of 0 € T,M



1.2 Injectivity radius of an observer
(M.,g,p, T,) : time-oriented, pointed, Lorentzian manifold
(p, Tp) : (infinitesimal) observer
T, future-oriented, unit time-like vector
Exponential map
» Exponential map: exp, : Bg,(0,i0) = T,M — Bg(p,io) = M
» Defined in a neighborhood of 0 € T,M

Reference Riemannian metric

» Positive definite inner product gr, , at p
» Orthonormal frame e, at p with e := T,
» From gp=fe°®eo+e1®el+,,.+e”®e"
we define
8T,p = R +el@el+...+e"®e"

» Reference Riemannian metric g1, once a field of observers T is
prescribed

» By g-parallel transporting T,, we define a vector field T, along any
radial geodesic «y : [0, r] — M from p.



Norm of the curvature
» Using g7, 5, we can compute the norm |A‘grp,p of a tensor at p

» Using the associated Riemannian metric g7, we can compute the
norm

sup |ng|grﬂ,
[0.r]
» Finally the Riemann curvature norm associated with the observer is

Riem,(p, T,) := sup sup |Rmg|g,_
v [0,r] K



Norm of the curvature
» Using g7, 5, we can compute the norm |A‘grp,p of a tensor at p

» Using the associated Riemannian metric g7, we can compute the
norm

sup |ng|grﬂ,
[0.r]
» Finally the Riemann curvature norm associated with the observer is

Riem,(p, T,) := sup sup |Rmg|g,_
v [0,r] K

Lorentzian notion of injectivity radius
» Injectivity radius of the observer (p, Tp)
lnj(Mag7 pa TP)

supremum of all radii r such that exp, is a global diffeomorphism
from By, 5(0,r) to its image Br(p,r) € M



Classical result fo Riemannian manifolds

» A complete Riemannian n-manifold (M, g) such that, in the unit
geodesic ball B, (p, 1) centered at some p e M,

Riem; := sup |[Rm,| < K
Bg(p.1)
» Cheeger, Gromov, and Taylor: there exists a constant ¢y(Kp, n) > 0

such that
an(Mvg) = CO(K07n) VOIg(Bg([), l))



Classical result fo Riemannian manifolds

» A complete Riemannian n-manifold (M, g) such that, in the unit
geodesic ball Bg(p,1) centered at some p e M,

Riem; := sup |[Rm,| < K
Bg(p.1)
» Cheeger, Gromov, and Taylor: there exists a constant ¢y(Kp, n) > 0

such that
an(Mvg) = CO(K07n) Vo'g(Bg(pv l))

We establish a Lorentzian version
» Local and geometric estimate “a la Cheeger-Gromov-Taylor”
» No a priori prescription of a foliation or coordinate chart

» No assumption on the derivative of the curvature



Our Lorentzian version.
Recall our definition

Riem, (M, g, p, Tp) := supsup |Rmg|g;,
Y [0,r] v

Theorem.

Lower bound on the Lorentzian injectivity radius (BL Chen & PLF)

There exists a universal constant c¢(n) > 0 such that, if (M, g,p, T,) is a
pointed Lorentzian (n + 1)-manifold satisfying the curvature bound

. 1
Riem,(M, g,p, T,) < 2

then




Our Lorentzian version.
Recall our definition

Riem, (M, g, p, Tp) := supsup |Rmg|g;,
Y [0,r] v

Theorem.

Lower bound on the Lorentzian injectivity radius (BL Chen & PLF)

There exists a universal constant c¢(n) > 0 such that, if (M, g,p, T,) is a
pointed Lorentzian (n + 1)-manifold satisfying the curvature bound

1
Riem,(M, g,p, T,) < 2
then .
|”J(Mag,P7 Tp) S ( ) Vo'g(BM,g(pa C(n)r))
———— =cn pres) .

Proof based on a study the geometry of the covering

exp, : B, ,(0,r) — By, (p,r)cM

8Tp.p



1.3 Local CMC foliation of an observer

Objective
» Given an observer (p, T,), define and construct a canonical CMC
(constant mean curvature) foliation by spacelike hypersurfaces

» Defined locally in a neighborhood of p

» Quantitative estimates involving curvature and injectivity bounds
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1.3 Local CMC foliation of an observer

Objective
» Given an observer (p, T,), define and construct a canonical CMC
(constant mean curvature) foliation by spacelike hypersurfaces
» Defined locally in a neighborhood of p

» Quantitative estimates involving curvature and injectivity bounds

» Here general Lorentzian manifolds. Next: Spatially harmonic
coordinates for Einstein vacuum spacetimes
Earlier works

» Riemannian manifolds: De Turck and Kazdan, Jost and Karcher:

» There exists ii = i1(Inj, Ko) such that, given & > 0, one can cover
Bg(p, 1) by harmonic coordinates and get the optimal regularity of
the metric coefficients

e “ge<g<e g ge : Euclidian

lg w228, (p,i0)) < Ce.a ae[l,0)

» Lorentzian manifolds: VRm bounded (or even more regularity)
» Bartnik-Simon, Gerhardt, etc.



Local canonical foliations

Definition
Given 0 € (0,1) (close to 1, say), a local canonical CMC foliation for the
observer (p, Tp):
» a foliation by n-dimensional spacelike hypersurfaces ¥ ; of constant
mean curvature t
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» a foliation by n-dimensional spacelike hypersurfaces ¥ ; of constant

mean curvature t
( U Zt) S p
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» the range of t of order 1/r, specified by some constant s € [0, 20]
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g:=(1—9);, E o= (1+9)Sr

n




Local canonical foliations

Definition
Given 0 € (0,1) (close to 1, say), a local canonical CMC foliation for the
observer (p, Tp):

» a foliation by n-dimensional spacelike hypersurfaces ¥ ; of constant

mean curvature t
( U Zt) S p

<<t

» the range of t of order 1/r, specified by some constant s € [0, 20]

n —
g:=(1—9);, E o= (1+9)Sr

> the unit normal N, the lapse function A := ( — g(Vt,Vt))1/2 and
the second fundamental form h satisfy (pointwise bounds)

n

—g(N,T)<67',  0<-r2A<6!,  rlp<67!

T being defined by parallel translating T, along radial geodesics




Theorem. Existence of canonical foliations

There exist universal constants c(n),6(n) > 0 such that, if (M, g,p, T,)
is a pointed Lorentzian manifold satisfying at some scale r > 0

Riem,(M,g,p, T,) <r %, Inj(M,g,p,T,) >r,

then
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level set function



Theorem. Existence of canonical foliations

There exist universal constants c(n),6(n) > 0 such that, if (M, g,p, T,)
is a pointed Lorentzian manifold satisfying at some scale r > 0

Riem,(M,g,p, T,) <r %, Inj(M,g,p,T,) >r,

then the Riemannian ball B1(p, c(n)r) can be covered by a local canonical
CMC foliation for the observer (p, T,,) (with § = 6(n)).

» Search for CMC graphs over Lorentzian geodesic spheres

» Prescribed mean curvature problem: nonlinear elliptic problem for the
level set function

» Barrier functions: Lorentzian and Riemannian geodesic spheres

» Uniform control of the geometry of these graphs in terms of the curvature
and injectivity radius:

» low regularity of the metric, loss of derivatives
» estimates derived with Nash-Moser iterations



1.4 Local CMC-harmonic coordinates of an observer

» (M, g,p, Tp): an (n+ 1)-dimensional, pointed Einstein vacuum
spacetime Rag =0

» Satisfying the curvature and injectivity bounds at the scale r > 0

Riem,(M,g,p, T,) < r 2, nj(M,g,p, Tp) = r
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spacetime Rag =0

» Satisfying the curvature and injectivity bounds at the scale r > 0
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Then, for some small constants 0 < ¢ < ¢ << 1 and r, € [cr, cr]
there exist local coordinates

x=(x%xt . x") = (XY x")

x(p) = (n,0,...,0)



1.4 Local CMC-harmonic coordinates of an observer

» (M, g,p, Tp): an (n+ 1)-dimensional, pointed Einstein vacuum
spacetime Rag =0

» Satisfying the curvature and injectivity bounds at the scale r > 0

Riem,(M,g,p, T,) < r 2, Inj(M,g,p, Tp) = r

Then, for some small constants 0 < ¢ < ¢ << 1 and r, € [cr, cr]
there exist local coordinates

x=(x%xt . x") = (XY x")

x(p) = (n,0,...,0)

|t —n|<c?r
(M2 +...+ (X”)2)1/2 <c?r

so that the following properties hold:



Theorem. Existence of CMC-harmonic coordinates

» ¥, (constant t) spacelike hypersurfaces with constant CMC
equal to ¢ 1r—2t
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» ¥, (constant t) spacelike hypersurfaces with constant CMC
equal to ¢ 1r—2t

» (x,...,x") spatially harmonic coordinates for the metric
induced on the leaves ¥ ;

» The Lorentzian metric, decomposed as
g = —Ax)?(dt)® + g,-j(x)(dxi +&(x) dt) (dxj +8(x) dt),

remains uniformly close to the Minkowski metric

e ¢ <A< e, e €0 < gj < €5, |§|§ = git'el < e




Theorem. Existence of CMC-harmonic coordinates

» ¥, (constant t) spacelike hypersurfaces with constant CMC
equal to ¢ 1r—2t

» (x,...,x") spatially harmonic coordinates for the metric
induced on the leaves ¥ ;

» The Lorentzian metric, decomposed as
g = —A(x)2(dt)? + gij(x) (dx' + & (x) dt) (dx! + &€ (x) dt),
remains uniformly close to the Minkowski metric
e C<A<el, e % <g<efsy, €12 = gy€'¢ < €€

» Optimal regularity property: for all g € [1, +o0) and a constant
C(n,q) >0

j |ag|qdv:t+r—"+2qf g |7dvs, < C(n, q)
pa pars

low regularity: only up to 2 derivatives of the metric



ADM formulation of the Einstein equations R,z = 0.

1

» Since x*,...,x" are harmonic coordinates on ¥, we have the

L
elliptic equations g"'--£L; + Q;(0g,dg) = —2R;;, where

Oxkox!

Qij(0g, dg) is quadratic in Og.



ADM formulation of the Einstein equations R,z = 0.

» Since x!,...,x" are harmonic coordinates on ¥ ;, we have the

elliptic equations g* ik o + Q;(9g,0g) = —2Rj;, where
Qi(0g,0g) is quadratlc in 0g.

> Denote by g the Lorentzian metric. The second fundamental form
<V (XJ ; N> satisfies Einstein constraint equations

R,-Jz-k/ + kikkj — kitkij = Rijui
V/k,‘j — V,-k,j = R/,'Nj



ADM formulation of the Einstein equations R,z = 0.

1

» Since x*,...,x" are harmonic coordinates on ¥ ;, we have the

52

elliptic equations g* ik o + Q;(9g,0g) = —2Rj;, where
Qi(0g,0g) is quadratlc in 0g.
> Denote by g the Lorentzian metric. The second fundamental form
<V (XJ ; N> satisfies Einstein constraint equations

R,-Jz-k/ + kikkj — kitkij = Rijui

V/k,‘j — V,-k,j = R/,'Nj
» The induced metric gj; and the second fundamental form k;; satisfy
Einstein evolution equations
ogjj
0x0
Okij
0x0

—2Xkji + ﬁgg,'j

—ViViA+ Lekij — A gPkipkgj + X Rinjn



ADM formulation of the Einstein equations R,z = 0.

>

1

Since x*,...,x" are harmonic coordinates on ¥ ;, we have the

52

elliptic equations g* ik o + Q;(9g,0g) = —2Rj;, where

Qi(0g,0g) is quadratlc in 0g.

Denote by g the Lorentzian metric. The second fundamental form
<V (XJ ; N> satisfies Einstein constraint equations

R,-Jz-k/ + kikkj — kitkij = Rijui

Vikij — Vikj = Rijn;
The induced metric g;; and the second fundamental form k;; satisfy
Einstein evolution equations

ogij

30 = —2)Xkj + ﬁgg,'j

Okii

;Xé = —V;VJ')\ + Cgk,'j — )\gqu,-pkqj + A R,'Nj/\/

We deduce an elliptic equation for the shift vector ¢

differentiating the spatially harmonic condition Ax* = 0 with respect
to x° and using the CMC condition:
AR = —gMR;e — (trk) g VX + 28" g kX — 20 g¥Riy.

And an elliptic equation for the lapse function \



1.5 Construction of the local canonical foliation
The remaining of this section is focused on the foliation.
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1. Lorentzian geodesic foliation of the observer (p, T,).
» v :[0,Cr] — M: future-oriented, timelike geodesic with y(cr) = p
and y(p) = T) Set g = 7(0)
» |J,. H,: a neighborhood of p foliated by Lorentzian geodesic spheres
centered at g in the past of p



1.5 Construction of the local canonical foliation

The remaining of this section is focused on the foliation.

1. Lorentzian geodesic foliation of the observer (p, T,).
» v :[0,€r] > M: future-oriented, timelike geodesic with v(cr) = p
and ¥(p) = Tp Set g = 7(0)
» |J,. H,: a neighborhood of p foliated by Lorentzian geodesic spheres
centered at g in the past of p

» y = (y®) = (7,y/): normal coordinates associated with radial
geodesics from the point g

Three families of hypersurfaces:
» Lorentzian geodesic spheres
» Riemannian geodesic spheres
» CMC hypersurfaces




2. Distance Hessian comparison.

» on the orthogonal hyperplane E := (VT)l

k(r,r)gj < (=V?7)|e < k(7,r) gj

ric

in which k(7,r) := — ¢ and k(r,r) := ﬁ
tan Tr—

tan (T r*lC)
» constant C depending on the sup-norm of the curvature, only

> In particular, for the mean curvature we obtain the uniform control
nk(r,r) < Hy, < nk(r,r) solely in terms of our curvature norm.



2. Distance Hessian comparison.

» on the orthogonal hyperplane E := (VT)l

k(r,r)gj < (=V?7)|e < k(7,r) gj

in which k(7,r) := ﬁ and k(r,r) = ﬁ
tan (7 r— tan Tro

» constant C depending on the sup-norm of the curvature, only

> In particular, for the mean curvature we obtain the uniform control
nk(r,r) < Hy, < nk(r,r) solely in terms of our curvature norm.

3. Riemannian geodesic foliation of the observer.
» Take p’ = v(7) with 7 € [cr,Cr]

» For each a € [cr,Tr], consider the Riemannian slice
A(p',2) = S (p',2) 0 T (q)

determined by the reference metric gr associated with T (parallel
transport from T,)

» For the mean curvature we obtain the uniform control
nk(a,r) < Ha,a) < nk(a,r) solely in terms of our curvature norm.



4. Equations for the CMC foliation | J, X:.

» The unknown hypersurfaces ¥, = {(u’(y),y)} (with second
fundamental form h;j;) are sought for

» as graphs over a given geodesic slice H, (with second fundamental
form Aj) for a given 7

» Mean curvature equation

1

A/1+ |V):U|2

Mu = h;gh = (Azu+Ajj>

in which A; := (V2,7);



4. Equations for the CMC foliation |, >;.

» The unknown hypersurfaces ¥, = {(u’(y),y)} (with second
fundamental form h;j;) are sought for

» as graphs over a given geodesic slice H, (with second fundamental
form Aj) for a given 7

» Mean curvature equation

1

A/1+ |V):u|2

Mu:= h,-jg"j: (Azu+Ajj>

in which A; := (V2,7);

» Nonlinear elliptic Partial Differential Equation
» Barriers provided by the Lorentzian and Riemannian slices

» Existence by the method of continuation, provided ¥ remains
spacelike




Expression of the mean curvature operator

» Setting u; := du/dy/, the induced metric and its inverse read

ik ol
g g uuy

gU:gU_uiuj7 gU:gU+17|VU‘2'

» The hypersurface ¥; is spacelike iff

\Vul?> = g¥(u, Yuu; < 1.

» V: covariant derivative associated with the induced metric gj:

[Vul?

Vul? = glyju; = ————
| U‘ &7 uil; 1—|VU|2

» Future-oriented unit normal

N = —/1+[Vu]2(1,Vu)



» Second fundamental form of the slice

1
hj = ———— (Vi + Ay)
Y1t [V ul? ! Y
» Mean curvature
1
Mu = h U*i( u—l—AJ)
i& 1+ |Vul? >

» In local coordinates

1 0 iy, ou
Mu _WTM (Vg(u,-)u(Vu)g (u, )5yf)

( (Vu)~tgl(u ,-)+V(Vu)g”‘(u7-)gj’(u,-)uku,)

with v(Vu) := m =4/1+ |Vu]? =v(Vu)




5. Localization of the CMC slices and existence of the foliation

“Quantitative estimate”: we must make sure that our parameters depend
only on the assumed curvature bound.




» Fix s € [¢,2c] (small parameter) and consider the following two
points in the future of p

Py i=(sr), Pl i=(s'T) =5+
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Qs = A(pL,s'sr) N Hoesr s's=s?+5s°



» Fix s € [¢,2c] (small parameter) and consider the following two
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Qs = A(pL,s'sr) N Hoesr ss=s*+5°

» Our CMC hypersurface X;: graph of the function u given by the
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for any chosen mean curvature value t € [nk(sr,r), nk(2s%r,r)]



Fix s € [c,2c] (small parameter) and consider the following two
points in the future of p

Py i=(sr), Pl i=(s'T) =5+

Consider the subset Qg < H.,—_s of the geodesic slice, bounded by
its intersection with a Riemannian 3-sphere, defined as follows:

Qs = A(pL,s'sr) N Hoesr ss=s*+5°
Our CMC hypersurface ¥;: graph of the function u given by the
Dirichlet problem
Mu=t inSQ, u=sr in 0Qs
for any chosen mean curvature value t € [nk(sr,r), nk(2s%r,r)]

Finally, for each s, we specifically choose the slice corresponding to
t .= 2k(sr,r) € [k(sr,r), k(25°r,r)].



1.6 Further ingredients for the proof

» Rely on the geometric structure of the problem / properties of the
prescribed curvature problem

» Simons identity : second fundamental form hj; controled in terms of
the ambiant curvature of the Lorentzian space
A):h,j = Azh,‘j — (trh),j
= |h[* hy — (tr h)hichyg" — Ripjghug™g” + Ripighicg™ g™
+ Vo (Ryni)g™ — V(Rin)

» Weizenbock identity : Global gradient estimate ensuring that the
prescribed mean curvature equation is uniformly elliptic (cf. more
details below)

» Quantitative estimates involving the curvature Rmg, only /
Nash-Moser type technique



Spacelike nature of the CMC hypersurfaces

Lemma

Weitzenbock's identity and the prescribed CMC equation imply the fol-
lowing inequality satisfied by the Laplacian of |Vu|?> on the hypersurface
P

AVl = 2|V2u? 2 {Vu, VALY — (1 + |VuP)?

with, moreover,
[Aul <1+ \Vu|2 = V(Vu)2

» At this stage, the operator A on ¥; has possibly unbounded
coefficients, since we do not control |Vu| yet.



Proposition

The CMC hypersurfaces are spacelike:

[Vu|re =sup|Vu| <1

sr

Step 1. Estimate |Vu|

1~ in term of |Vu|.» for some finite py
» We set
v=?=k)y =1+ |Vu? -k,
with k so large that v = 0 on 0%

» Choosing such a k is possible, since the desired gradient estimate
near the boundary follows from the maximum principle



» Given g = 1, we multiply by v our Weitzenbock's inequality
A[Vul? = 2|V2u? 2 (Vu, VAu) — (1 +|VuP)’

and then we integrate over the hypersurface
» Using also that |Au| < 1+ |Vul?, we obtain
J (q VI V2 4+ Ve \V2U\2) dvs
b

< J (q vITH(Vv, Vuy + vIt3 4 v") dvs
b



» Setting g =: 2m — 1 we obtain (for all m > 1)
Vv By < m? V272 422

» Rewritting this in the coordinates y/ in the geodesic slice and
applying the Sobolev inequality (in a fixed compact domain)

HWHLZn/(n D(Q,) > nga wojw + w HL1 ()

with the function w := v”/2 with now p:=2m—1/2, we deduce

2/p“vp+2+vp 2H1/P

[ -1 0,y S P 0.) p>2

» Control the LP"("=1) norm of v in terms of its LP norm



» Since pn/(n—1) < p, an iteration procedure allows us to control the
sup norm of v

» Namely, without loss of generality, assume that | v/ .= (q,) =1 (for
otherwise the result is immediate) so our main estimate reads

2
max (L, [Vl v(a,) € PYPIVIEE g, max (L, [V,

and after iteration

IVl @) S VI @) V] Lo ()
2 & 2n
o =— 1—1/n)k ==
Po kZ:]O( /" Po

» It suffices to take pp > 2n



Step 2. Uniform gradient estimate in a fixed L” norm
» From |Au| < [v(Vu)|? and for all A > 0, we find
A(eM) = XM |Vul? + AeMAu

= NeM|Vul2 — X et p(Vu))?

» From this and our Weitzenbock's inequality, we deduce
A(vPe) 2 —vP M (Pt + Av) — N (v — 1))
+ ApovPter(Vu, Vv)
+ povP M {(Vu, V(Au)) + po(po — 1)vP2eM|Vv|?

» 2(v* + Av) — A%(v — 1) < v3, provided k > 1 is fixed and \ is
arbitrarily large

» Integrate over ¥ and proceed as in Step 1 (with large \)

L Vul dvs < G



2. Euclidian-Hyperboloidal Foliations

of Matter Spacetimes
With Yue Ma (Xi'an Jiaotong)
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» Einstein-Klein-Gordon equations

» main challenge: no invariance under scaling

» energy-momentum tensor
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2. Euclidian-Hyperboloidal Foliations

of Matter Spacetimes
With Yue Ma (Xi'an Jiaotong)
2.1 Field equations: Einstein and f(R)-modified gravity
Massive matter
» Einstein-Klein-Gordon equations

» main challenge: no invariance under scaling

» energy-momentum tensor
Tap = Vad¥Vs6 — (3677 Var6Vr6 + U(6) ) gus

Einstein-Klein-Gordon system: typically U(¢p) = c?¢?/2
Rup = 87(VadVso + U(6) gas) = 0
e — U'(¢) =0

» nonlinear system of coupled wave and Klein-Gordon equations
in wave (harmonic, De Donder) gauge

Generalized Hilbert-Einstein functional
J (f(R) +167L[o, g]) dV, F(R) = R+ gr\ﬂ + K2O(RY)
M

“mass parameter” 1/k >0



The well-posed formulation of the f(R)-gravity theory

ArXiv gr-qc: 1412.8151
The mathematical validity of the f(R) theory of modified gravity,

PLF &, Y. Ma, Mémoires Société Math. France

Field equations of modified gravity My =81 Top
1
Mas =f'(R) Gas = 5 (F(R) = Rf'(R) ) gas + (s Tl — Va Vs ) ('(R))

» fourth-order field equations, well-posed Cauchy formulation

» vacuum Einstein solutions are vacuum f(R)-solutions

Conformal transformation glﬁ = e"’g,p with p = L In(f'(R))

K
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» fourth-order in the physical metric g
» third-order in the (unphysical) conformal metric g
» scaling with k — 0 so that p — R
p = p(R) still referred to as the scalar curvature field



The well-posed formulation of the f(R)-gravity theory

ArXiv gr-qc: 1412.8151
The mathematical validity of the f(R) theory of modified gravity,

PLF &, Y. Ma, Mémoires Société Math. France

Field equations of modified gravity My =81 Top
1
Mas =f'(R) Gas = 5 (F(R) = Rf'(R) ) gas + (s Tl — Va Vs ) ('(R))

» fourth-order field equations, well-posed Cauchy formulation
» vacuum Einstein solutions are vacuum f(R)-solutions

Conformal transformation glﬁ = e"’g,p with p = L In(f'(R))

K
» fourth-order in the physical metric g
» third-order in the (unphysical) conformal metric g
» scaling with k — 0 so that p — R
p = p(R) still referred to as the scalar curvature field

Evolution of P trace of the field equations
Klein-Gordon equation for the spacetime scalar curvature

3kgtp—p = gre g™ T,5 + H(p) fa(p)| < Kp?



Field equations in the conformal metric

1 _ K
Rlap — 662 V1apVigp — € 270 (p) &1 5

= 87re—2'€9(7'aﬁ _ %glg (gTa'ﬂ/ Ta’B’))

» no fourth-order derivatives in the conformal metric g

» only Ricci curvature, first-order derivatives of p



Field equations in the conformal metric

1 _ K
Rlap — 662 V1apVigp — € 270 (p) &1 5

= 87re—2”9(7'aﬁ _ %glg (gTa,ﬁ/ To/@/)>

» no fourth-order derivatives in the conformal metric g

» only Ricci curvature, first-order derivatives of p

We regard p as an independent unknown.

Klein-Gordon equation for the curvature field
36gtp—p = 8reg! ™’ Tos + f(p)
Defining relations
Els = € o p =3 In(f'(R))
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2.2 The Euclidian-Hyperboloidal Foliation Method

2015 ArXiv gr-qc: 1507.01143 The global nonlinear stability of Minkowski space for
self-gravitating massive fields. The wave-Klein-Gordon model,
Communications in Math. Phys. 346 (2016)

2015 ArXiv gr-qc: 1511.03324 Monograph, World Scientific Press, 2018.
2017 ArXiv gr-qc: 1712.10045, Monograph (non-compact matter, f(R)-gravity)

Our foliation in conformal wave gauge [;ix* =0

» asympt. hyperbol. surfaces in the interior of the light cone (boost fields)
» asympt. flat hypersurfaces in the exterior (translation fields)

» a transition region connecting them near the light cone

[Sobolev inequalities, hyperboloidal-euclidian energy functional, etc.]

Some earlier related work for massless matter.

» hyperboloidal foliations for wave equations
Friedrich 1981, Klainerman 1986, Hormander 1997
» wave gauge [Jox* =0 Lindblad & Rodnianski (2010)
Einstein-massless fields



f(R)-gravity for a self-gravitating massive field
ﬁg*gig =Fap(g’, ogt) + 87r< 26 "0, ¢ + 2 pPe 2P gt 5)
— 3K%0apdpp + £ O(p?)g] 5
\ng¢ - Czﬂs =c? (e_&p = 1)(;5 + KJgTaﬁaa@?ﬁp
36 C0g1p — p = R O(p?) — Bre ™ (g7 00 + 267 €™ ¢?)




f(R)-gravity for a self-gravitating massive field
Cletels = Fas(e!, ") + 87 (— 2672000056 + Cg2e 0 gl )
—3K20ap0sp + K O(p)gl
gt — o =c?(e™™ —1)¢ + kgt 0addsp
3Kﬁgfp —p= /{O(p2) s (gTaﬁé’aqﬁ@g(ﬁ 1922 efﬁp¢2)

» wave gauge conditions gTQﬁ FTQB =0

> curvature compatibility €™ = f'(R,—rp41)

» Hamiltonian and momentum constraints of modified gravity
(propagate from any given Cauchy hypersurface)




f(R)-gravity for a self-gravitating massive field
ﬁg*glﬁ =Fap(g’, ogt) + 87r< 26 "0, ¢ + 2 pPe 2P gt 5)
— 35%0apdpp + 1 O(p")ELs
Clpr¢ — 26 = (7 —1)¢ + ng™ 0009
3600grp — p =k O(p?) — 8re™™ (gT“ﬂ da$0p¢ + 2¢2 e7”p¢2)

» wave gauge conditions gTQﬁ FTQB =0

> curvature compatibility €™ = f'(R,—rp41)

» Hamiltonian and momentum constraints of modified gravity
(propagate from any given Cauchy hypersurface)

Taking the limit kK — 0

Einstein system for a self-gravitating massive field

E‘ggaﬁ = Faﬁ(g7 ag) + 87 ( - 28a¢aﬁ¢ + C2¢2 gozﬁ)
mg(b - C2¢ =0

g —g p— 8m(g* VadVso + 2767



Constructing the interior/exterior spacetime foliation

Global coordinate chart (t, x?) s2=1t>—r?and r? := > (x?)?
Asymptotically Killing fields
» translations d, (tangent fields in the exterior)
» boosts L, = x,0; + t0, (tangent fields in the interior)
» rotation fields Q.5 = x,0p — x50,  (tangent fields exterior/interior)

but not on the scaling field S = t0; + ro,



Constructing the interior/exterior spacetime foliation

Global coordinate chart (t, x?) s2=1t>—r?and r? := > (x?)?
Asymptotically Killing fields
» translations d, (tangent fields in the exterior)
» boosts L, = x,0; + t0, (tangent fields in the interior)
» rotation fields Q.5 = x,0p — x50,  (tangent fields exterior/interior)

but not on the scaling field S = t0; + ro,

We combine two foliations together:

» Interior: (asymptotically) hyperboloidal slices
{t? — r? = s?} < R¥™! with hyperbolic radius s > so > 0 wave cone
propagation

» Exterior: (asymptotically) Euclidian slices {t = ¢} < R of
constant time t

asymptotic flatness



Asymptotically Euclidian-Hyperboloidal hypersurfaces M, = {t = T(s,r)}
» Transition function £(s,r) =1 — x(r +1 —s%/2) € [0,1]

» based on a cut-off function x
» x(y) =0 for y < 0 while x(y) =1 for y > 1.
» “transition” around 2r ~ s* = t* — r?

> Foliation parameter s defined by 0, T (s, r) := LE00 ith T(s,0)=s

A/ 52412

> in the interior T2 = 5% + r2
» in the exterior T = T(s) ~ 52 independent of r, slow time



Asymptotically Euclidian-Hyperboloidal hypersurfaces M, = {t = T(s,r)}
» Transition function £(s,r) =1 — x(r +1 —s%/2) € [0,1]

» based on a cut-off function x
» x(y) =0 for y < 0 while x(y) =1 for y > 1.
» “transition” around 2r ~ s* = t* — r?

> Foliation parameter s defined by 0, T (s, r) := LE00 ith T(s,0)=s

A/ 52412

> in the interior T2 = 5% + r2
» in the exterior T = T(s) ~ 52 independent of r, slow time

Properties (tangent vector, deformation, etc.)
» tangent vectors boosts in the interior
» interpolation in the intermediate region

» translations in the exterior



2.3 Further ingredients in the method
The Euclidian-hyperboloidal energy
Weight function wy = x(r — t)(r — t)” for some v > 0

Weighted wave/Klein-Gordon energy for [Jv — c?v with ¢ >0

2
El(s,v) := ff (1+w,) ((1 - 2;—2) (5tv)2 +Z (%xaatv + (%v) + 62V2> dx



2.3 Further ingredients in the method

The Euclidian-hyperboloidal energy
Weight function wy = x(r — t)(r — t)” for some v > 0

Weighted wave/Klein-Gordon energy for [Jv — c?v with ¢ >0

EX(s,v):= Ls(l + wy) ((1 - 2;) (ev)” + Za: (%x"@tv + ﬁaV)z + 62V2> dx
Energy balance law
E2(5,0)"% 5 B2 (0, ) 4 [ 10 = vliag
50
1 s - €)@ = )l
50

+ f s'|(1 + wy) (@Ov — ) HL2<55,)ds'
50

Notation M := Hs U Ms U &s



He :={t2 =s>+r’ r<-1+ 52/2} hyperboloidal interior region
Tz ;:{ —1+s2/2<r<s?2, t=T(s, r)} transition region

E ::{t =T(s), r> 52/2} Euclidian exterior region

0



He :={t2 =s>+r’ r<-1+ 52/2} hyperboloidal interior region

T. :={ —1+s2/2<r<s?2, t=T(s, r)} transition region
&, ::{t =T(s), r= 52/2} Euclidian exterior region
Controled norms s?=1t>—r?and £ = £(s,r) €[0,1]

s 1
H;arUHLZ(HS) + H;LaUHLZ(Hs) + clul 2y

1 _
H\/ 2 — erQ;atuHLZ(TS) + Haau“p(Ts) + CHUHLQ(TS)

(14 wy)aeu] sy + 1L+ w)0atizgey + el (1 + )l e,

(&)

Higher-order energies:

> based on the Killing fields of Minkowski

» we establish “good” commutator properties for our foliation



Functional inequalities
Define the Euclidian-hyperboloidal frame to be:

B = 0.Td:, = ﬂt”)xaat + 0,

Translations 0 in the exterior / boosts L, = x?0; + td, in the interior
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Translations 0 in the exterior / boosts L, = x?0; + td, in the interior

Proposition. Sobolev inequalities without scaling field

For arbitrary functions u defined on the Euclidian-Hyperboloidal foliation one
has
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Functional inequalities
Define the Euclidian-hyperboloidal frame to be:

B = 0.Td:, = ﬂt”)xaat + 0,

Translations 0 in the exterior / boosts L, = x?0; + td, in the interior

Proposition. Sobolev inequalities without scaling field

For arbitrary functions u defined on the Euclidian-Hyperboloidal foliation one
has

lu(x)| < t7%2 Z H&’LJuHLz(HS) hyperboloidal interior region
417 <2
lu(x)| S L +r+t) Z |\5lQJuHL2<7—S) transition region
[+]J]<2

lu(x)| S @ +r7" Z H(?IQJUHLQ(ES> Euclidian exterior region
+Ml<2

Many more ingredients
» Quasi-null structure of the Einstein equations in wave gauge
» Huyghens-Kirchhoff formula, etc.

» Hierarchy of energy bounds, bootstrap argument



2.4 Stability statements in wave gauge

Theorem. Stability of Minkowski space for massive fields (PLF-YM 2015-2017)

Consider the Einstein-massive field system in wave coordinates and initial data
with Schwarzschild-like decay gap ~ 0.5 + O(1/r) and k., = O(1/r?) satisfying
Einstein's Hamiltonian and momentum constraints.

Then, there exist constants €,7 > 0 (small) and G, > 0 (large) such that for
any data satisfying
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2.4 Stability statements in wave gauge

Theorem. Stability of Minkowski space for massive fields (PLF-YM 2015-2017)

Consider the Einstein-massive field system in wave coordinates and initial data
with Schwarzschild-like decay gap ~ 0.5 + O(1/r) and k., = O(1/r?) satisfying
Einstein's Hamiltonian and momentum constraints.

Then, there exist constants €,7 > 0 (small) and G, > 0 (large) such that for

any data satisfying for v € (0,77) and N = N(v) hop = 8ap — &Map and
P=Il+[J]+ K|

E" (s0,0' L’ hap)? < € P<N+2
Eg+1/2(50,6’LJQK¢)1/2 <e, P<N+2
a global solution (g, ¢) exists with a Euclidian-hyperb. foliation US>SO M
E7(s,8'L'QX hop)? < Coes®, P<N
ETt2(s, o' QX V2 < Goes® 112, P<N
EXT(s,0'L’Q%9)"? < Goes”, P<N-—4




In summary

1. CMC foliations and spatially harmonic coordinates
» Local behavior, quantitative bounds
» Notion of CMC—harmonic radius of an observer
» Main result established with this method :

“Bounded curvature” implies “controled Lorentzian geometry”




In summary

1. CMC foliations and spatially harmonic coordinates
» Local behavior, quantitative bounds
» Notion of CMC—harmonic radius of an observer
» Main result established with this method :

“Bounded curvature” implies “controled Lorentzian geometry”

2. Euclidian-hyperboloidal foliations and wave coordinates
» Global construction, weighted Sobolev norms
» Control the decay of solutions at time-like and space-like infinity
» Main result established with this method :

global nonlinear stability of massive fields
(under smallness conditions)




