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The Nature of This Work

This work will be concerned with the asymptotic

behavior of massless fields in asymptotically flat

spacetimes of arbitrary dimension. The focus will be on

the relations between behavior at different powers of

fall-off in an assumed 1/r type expansion (an assumption

that is slightly weaker than smoothness at scri in even

dimensional spacetimes). No attempt will be made to

investigate issues like convergence of the expansion.

Although the primary application of this work will be to

the memory effect in d > 4 spacetime dimensions, all of

this talk will focus on linear scalar, electromagnetic, and

linearized gravitational fields on Minkowski spacetime.



Asymptotic Behavior of a Scalar Field

Consider a scalar field, φ, in d-dimensional Minkowski

spacetime, d ≥ 4, satisfying the massless Klein-Gordon

equation

�φ = f .

Introduce retarded null coordinates (u ≡ t− r, r, xA),

where xA are coordinates on the (d− 2)-sphere. Assume

as an ansatz that φ admits an expansion of the form

φ =
∑

n

φ(n)(u, xA)

rn

and that f admits a similar expansion. (More generally,

in these expansions, one could replace n by n+ α for any



α ∈ [0, 1), but we will soon restrict to α = 0 in any case.

For α = 0, this ansatz is equivalent to smoothness at

scri.) Then the Klein-Gordon equation becomes the

following sequence of equations
[

D2+(n−1)(n−d+2)
]

φ(n−1)+(2n−d+2)∂uφ
(n) = f (n+1)

where D2 denotes the unit sphere Laplacian. There are

two special values of n that stand out in this equation:

• n = d− 3 (“Coulombic order”): At this value of n

and all smaller values of n, the term in square

brackets is a negative definite operator.

• n = d/2− 1 (“radiative order”): At this value of n

the coefficient of the second term vanishes.



Homogeneous Wave Equation (Even Dimensions)

Set f = 0 and consider the case where d is even. Can

“solve” the homogeneous wave equation as follows: At

Coulombic order (n = d− 3), specify φ(d−3)(u, xA)

arbitrarily. Obtain the unique solution at one order

slower fall-off

φ(d−4) = −(d− 4)
[

D2 − 2(d− 4)
]

−1
∂uφ

(d−3)

Iterate to get φ(d−5), etc. The sequence terminates at

radiative order, n = d/2− 1.

To obtain the solution at one power faster fall-off than

Coulombic, integrate the equation



∂uφ
(d−2) = −

1

d− 2
D2φ(d−3)

which has a unique solution up to adding a

u-independent term, which can be fixed by initial

conditions at u = u0 (or u→ −∞). Iterate to get

successively faster fall-off terms. For any lth spherical

harmonic dependence of φ, the right side will vanish at

n = l + d− 2, so the sequence may be terminated at that

order.

Remarks:

• The above results show that the radiative order term

is related to the Coulombic order term by a formula



of the form

φ(d/2−1) = ∂(d/2−2)
u

[

(D2
1)

−1 . . . (D2
(d/2−2))

−1φ(d−3)
]

• If instead we had tried the ansatz

φ =
∑

n

φ(n)(u, xA)

r(α+n)

with 0 < α < 1, then “radiative order” would never

be attained. One can choose φ(n)(u, xA) at any order

and uniquely solve for all slower fall-off orders.

Unless φ(n)(u, xA) is a polynomial in u, the sequence

never terminates. Thus, one must use integral powers

of 1/r to get general solutions in even dimensions.



Odd Dimensions

In odd dimensions, a similar analysis shows that if we

specify φ(n)(u, xA) at any order, we can uniquely solve for

all slower fall-offs. For a non-polynomial u-dependence,

the slower fall-off sequence never terminates unless we

choose α = 1/2. Thus, we must expand φ in half-integral

powers of 1/r. Otherwise, the analysis is completely

analogous to even dimensions, except that “Coulombic

order” is never attained and the faster fall-off sequence

does not terminate for any spherical harmonic.

In addition to the half-integral sequence, one can

additionally have integral powers of 1/r (e.g., static

multipoles), but these must have polynomial dependence



in u in order to avoid blowing up at infinity.

For the remainder of this talk, I will restrict

consideration to even dimensions.



Scalar Wave Equation with Source

For a source, f , it would be physically reasonable to

demand that its integral over a sphere at large r be finite,

i.e., f (n) = 0 for all n < d− 2. Thus, the slowest fall-off

appearance of f is in the equation

[

D2 − (d− 4)
]

φ(d−4) + (d− 4)∂uφ
(d−3) = f (d−2)

For d > 4, we may again specify φ(d−3)(u, xA) arbitrarily

and solve this equation for φ(d−4), and then successively

solve for the slower fall-offs as before. We also may solve

for the faster fall-offs as before, so the presence of f

makes no significant difference. However, when d = 4 we



must solve

D2φ(0) = f (2)

If f (2) has no l = 0 part, this can be solved

straightforwardly. If f (2) has an l = 0 part, then this

equation cannot be solved within the ansatz. However, if

this l = 0 part is u-independent, then it can be solved by

adding the single term ln r to φ. On the other hand, if

the l = 0 part of f (2) has general u-dependence, one

would need to include an infinite series of new terms to φ

involving ln r/rn.



Maxwell’s Equations

We now consider Maxwell’s equations

∇a(∇aAb −∇bAa) = −4πjb

in d-dimensional Minkowski spacetime with d ≥ 4 and

even. Assume the ansatz

Aµ =
∞
∑

n=1

A
(n)
µ (u, xA)

rn

(Cartesian components). This is slightly weaker than

assuming smoothness at scri. Can Aa be put in Lorenz

gauge, ∇aAa = 0? This requires solving the scalar wave

equation for the gauge function φ



�φ = ∇aAa

This is exactly the issue that we just analyzed, except

the source is not “physical” and one can, in principle,

have contributions starting at order 1/r in all dimensions.

However, if Aa satisfies the source free Maxwell equations,

one can show that there is a unique solution of the

equations for φn for all 1 ≤ n ≤ d/2− 2 which satisfies,

∂uφ
(n) = A(n)

u

Since the equations can be trivially solved for

n ≥ d/2− 1, the issue of putting Aa in Lorenz gauge



boils down to solving the equation for φ(0)

D2φ(0) = (∇aAa)
(2) + (d− 4)A(1)

u

Using the source free Maxwell equations again, the right

side can be shown to have vanishing u-derivative, so this

equation can also be solved. Thus, under the above

ansatz for Aa, every source free solution to Maxwell’s

equation can be put in the Lorenz gauge, preserving the

ansatz.

If a charge-current source ja is allowed but is required to

fall-off as 1/r(d−2), then for d > 4, ja does not enter the

relevant part of the above analysis, and this conclusion

continues to hold.



However, when d = 4, if one has a nonvanishing flux of

charge to infinity, the last step of the analysis fails, and

one cannot impose the Lorenz gauge condition in d = 4.



Maxwell’s Equations in Lorenz Gauge

Maxwell’s equations in Lorenz gauge are simply

�Ab = −4πjb

Since each Cartesian component satisfies the scalar wave

equation, all of the fall-off results of the scalar case

continue to hold.

It is much more convenient to work with the components

Au, Ar, AA of the coordinates that we have introduced.

Our conventions on the assignment of “1/r orders” is

that the superscript “(n)” will denote that the “physical

components” are falling as 1/rn. Thus, the (angular)

coordinate components of A
(n)
A as 1/r(n−1). Maxwell’s



equations are

[

D2 + (n− 1)(n− d+ 2)
]

A(n−1)
u + (2n− d+ 2)∂uA

(n)
u

= −4πj(n+1)
u

[

D2 + n(n− d+ 1)
]

A(n−1)
r + (d− 2)A(n−1)

u

+ (2n− d+ 2)∂uA
(n)
r − 2DAA

(n−1)
A = −4πj(n+1)

r

[

D2 + (n− 1)(n− d+ 2)− 1
]

A
(n−1)
A

−2DA(A
(n−1)
u − A(n−1)

r )− (2n− d+ 2)∂uA
(n)
A = −4πj

(n+1)
A



In addition, the Maxwell field has to satisfy ∇aAa = 0.

This condition, in conjunction with the wave equation,

gives rise to the constraints

[D2 − (n− d+ 2)(n− d+ 3)]A(n)
r + (2n− d+ 2)DAA

(n)
A

+ (2n− d+ 2)(n− d+ 3)A(n)
u = −4πj(n+2)

r

If one wishes to solve Maxwell’s equations by choosing

data at Coulombic order (n = d− 3), then one must

impose this constraint at n = d− 3

D2A(d−3)
r + (d− 4)DAA

(d−3)
A = −4πj(d−1)

r

It turns out that to automatically ensure that the

constraints are satisfied at all n < d− 3, it is only

necessary to impose the following additional constraint



on the l = 0 part of the Coulombic order data

∂u
[

(d− 4)A(d−3)
u |l=0 + A(d−3)

r |l=0

]

= −4π(d− 4)j(d−2)
u

In addition, one must impose the above constraints at

an initial time u = u0 for all n > d− 3.



Linearized Gravity

Now consider the linearized Einstein equation

G
(1)
ab = 8πTab

for the metric perturbation hab in d-dimensional

Minkowski spacetime, with d even and d ≥ 4. Assume

the ansatz

hµν =

∞
∑

n=1

h
(n)
µν (u, xA)

rn

(Cartesian components). This is slightly weaker than

assuming smoothness at scri. Can hab be put in harmonic

gauge, ∇ah̄ab = 0, where h̄ab ≡ hab −
1
2
ηabh? This requires



solving the vector equation for the gauge function ψa

�ψb = ∇ah̄ab

Assuming Tµν = O(1/r(d−2)), the result is : (i) For d > 4,

the harmonic gauge condition can be imposed within the

ansatz. (ii) For d = 4, the harmonic gauge condition can

be imposed in linearized gravity, if there is no flux of

energy to infinity. It cannot be imposed within the ansatz

if there is an energy flux to infinity.Nonlinear gravity in

radiative spacetimes is like linearized gravity with a

stress-energy flux to infinity. The (nonlinear) harmonic

gauge condition cannot be imposed in d = 4, but there

should not be a problem with imposing it in d > 4.



The linearized Einstein equation in harmonic gauge takes

a form analogous to the Maxwell equations equations

when written in terms of the components in coordinates

(u, r, xA) takes a form analogous to the Maxwell

equations (but more complicated). The constraints are

now d in number and also take a similar form. The

equations can again be solved by (i) specifying the metric

perturbation at Coulombic order subject to the

Coulombic order constraints and an additional constraint

on the l = 0 part of the perturbation, (ii) uniquely

solving for the slower than Coulombic fall-off orders, and

(iii) solving for the faster fall-off orders, imposing the

constraints on the solutions at u = u0.



The Memory Effect

The memory effect is the permanent displacement of the

relative displacement of test particles after the passage of

a gravitational wave. These relative displacements are

governed by the geodesic deviation equation

d2ξa

dτ 2
= −Rcbd

aucudξb

Geodesic deviation at large distances at fall-off order

n ≤ d− 3 is thus determined by the electric part of the

Weyl tensor, Eab = Cacbdu
cud. For n ≤ d− 3, if the double

u-integral of E
(n)
ab (u, xA) is non-zero, there will be a

memory effect at order 1/rn. Using our procedure for

solving Einstein’s equation starting with a Coulombic



order perturbation h
(d−3)
ab (u, xA), it follows that for all

d− 3 ≥ n ≥ d/2− 1, E
(n)
ab can be expressed in terms of

h
(d−3)
ab as well as T

(d−2)
ab . Many u-derivatives enter this

expression, both from the formula for the Weyl tensor

and from the procedure for solving for h
(n)
ab for n < d− 3.

Assuming that the Coulombic order perturbation is

stationary at early and late times, then (i) No memory

effect can occur for any n < d− 3. (ii) At Coulombic

order n = d− 3 a memory effect can occur. This was first

found by Pate, Raclariu, and Strominger. This memory

effect can be due either to a flux of energy to infinity at

order d− 2 (“null memory”) or the nonstationarity of the

metric at order d− 2 (“ordinary memory”).



Conclusions

A surprisingly (to me, at least) large amount of

information about the asymptotic behavior of scalar,

electromagnetic, and gravitational fields can be learned

by studying the order-by-order field equations arising in a

1/r expansion. In particular, the key features of the

gravitational memory effect in all dimensions can be

understood.


