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Unstable wave equation

Consider the perturbed wave equation{
utt = uxx + uyy + e−iyux on T2 × [0,∞),
(u, ∂tu)�t=0 = (f , g) on T2.

It can be formulated as an ACP on X = H1(T2)× L2(T2):

d

dt

(
u
v

)
+ A

(
u
v

)
= 0,

where

A =

(
0 −1
−∆ 0

)
+

(
0 0

−e iy ∂
∂x

0

)
.

Then −A generates a C0-group (T (t))t∈R on X .
Renardy (1994): σ(A) ⊆ iR and ω0(T ) ≥ 1

2 .
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Problem

Goal

Analyze the growth behavior of (T (t))t∈R in detail (not just exponential
behavior).

More generally:

Goal

Relate delicate growth behavior of a semigroup to the resolvent growth of
its generator.
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Notation

Fix a Banach space X , and p, q ∈ [1,∞].

For m : R→ L(X ) measurable and of polynomial growth, set

Tm(f ) := F−1(m · F(f ))

for f : R→ X a Schwartz function. Let

Mp,q(X ) := {m | Tm : Lp(R; X )→ Lq(R; X ) bounded}

and
‖m‖Mp,q(X ) := ‖Tm‖L(Lp(R;X ),Lq(R;X )).

Let −A be the generator of a C0-semigroup (T (t))t≥0 on X . By rescaling,
we may assume throughout that C− ⊆ ρ(A) (not necessarily iR ⊆ ρ(A)).
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Main abstract result

Theorem

Let α ≥ 0. Then the following are equivalent:

1 ‖T (t)‖L(X ) = O(tα) as t →∞;

2 There exist p, q ∈ [1,∞] such that (a + i ·+A)−1 ∈Mp,q(X ) for all
a > 0, and

‖(a + i ·+A)−1‖Mp,q(X ) = O(a−α)

as a ↓ 0.

There is also a version for general semigroup growth, and for fractional
domains.
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Characterization of uniformly bounded semigroups

Corollary

The following are equivalent:

1 supt≥0 ‖T (t)‖L(X ) <∞;

2 There exist p, q ∈ [1,∞] such that (a + i ·+A)−1 ∈Mp,q(X ) for all
a > 0, and

sup
a>0
‖(a + i ·+A)−1‖Mp,q(X ) <∞.

Implies known characterizations of exponential stability.
The theory of (Lp, Lp) multipliers does not suffice (these are bounded).
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Fourier multipliers

Problem

What are sufficient conditions on m such that m ∈Mp,q(X )?

If X is a Hilbert space: p = q = 2 and supξ∈R ‖m(ξ)‖L(X ) <∞.
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Hilbert spaces

Corollary

Let X be a Hilbert space, and let α ≥ 0. Suppose that

‖(λ+ A)−1‖L(X ) = O(Re(λ)−α)

as Re(λ) ↓ 0. Then
‖T (t)‖L(X ) = O(tα)

as t →∞.

For α ∈ Z+: optimal up to possible arbitrarily small polynomial loss.
For α = 0: the Gearhart–Prüss Theorem.
For α = 1: Eisner–Zwart (2007).
A partial converse holds.
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Fourier multipliers

Problem

What are sufficient conditions on m such that m ∈Mp,q(X )?
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Positive kernels

Theorem (R., Veraar (J. Fourier Anal. Appl. 2017))

Let X = Lp(Ω) for 1 ≤ p <∞ and Ω a measure space. Let
m,K : R→ L(X ) be such that:

1 K (t) is positive for all t ∈ R;

2 K (·)x ∈ L1(R; X ) for all x ∈ X ;

3 F(K (·)x)(ξ) = m(ξ)x for all x ∈ X and ξ ∈ R.

Then m ∈Mp,p(X ) and

‖m‖Mp(X ) = ‖m(0)‖L(X ).

Condition (2) can usually be dealt with using approximation arguments.
Also holds for p =∞ if X is e.g. a suitable space of continuous functions.
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Positive semigroups

Corollary

Let X = Lp(Ω) for 1 ≤ p <∞ and Ω a measure space, and let α ≥ 0.
Suppose that T (t) is positive for all t ≥ 0, and that

‖(a + A)−1‖L(X ) = O(a−α)

as a ↓ 0. Then
‖T (t)‖L(X ) = O(tα)

as t →∞.

Also holds if X is a suitable space of continuous functions.
For α = 0: exponential stability result by Weis (1995).
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Fourier multipliers

Problem

What are sufficient conditions on A such that (a + i ·+A)−1 ∈Mp,q(X )
for a > 0?

Let H(L(X )) be the set of all S : (0,∞)→ L(X ) that extend to
holomorphic, exponentially bounded functions on a sector around (0,∞).
Set

ζ(T ) := inf{ω0(T − S) | S ∈ H(L(X ))}.

If ζ(T ) < 0 then (T (t))t≥0 is asymptotically analytic.
Eventually differentiable (in particular analytic) semigroups are
asymptotically analytic.
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Asymptotically analytic semigroups

Theorem (Batty, Srivastava (J. Differential Equations 2003))

Let α ≥ 0. Suppose that (T (t))t≥0 is asymptotically analytic, and that

‖(λ+ A)−1‖L(X ) = O(Re(λ)−α)

as Re(λ) ↓ 0. Then (a + i ·+A)−1 ∈M1,∞(X ) for all a > 0, and

‖(a + i ·+A)−1‖M1,∞(X ) = O(a−α)

as a ↓ 0.

Proof also uses that L1(R;L(X )) ⊆M1,∞(X ).
Here we need to consider Mp,q(X ) for p 6= q.
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Growth for asymptotically analytic semigroups and
multipliers

Corollary

Let α ≥ 0. Suppose that (T (t))t≥0 is asymptotically analytic, and that

‖(λ+ A)−1‖L(X ) = O(Re(λ)−α)

as Re(λ) ↓ 0. Then
‖T (t)‖L(X ) = O(tα)

as t →∞.

Applies in particular to eventually differentiable (and analytic) semigroups.
For α = 1: extends results by Eisner and Zwart (2007).
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Fourier multipliers

Problem

What are sufficient conditions on m such that m ∈Mp,q(X )?

X is UMD, p = q ∈ (1,∞), m ∈ C 1(R;L(X )), and

{m(ξ) | ξ ∈ R} and {ξm′(ξ) | ξ ∈ R}

are R-bounded in L(X ).
So far not useful. Requires (too) fast decay of m′.
However, there are useful (Lp, Lq) Fourier multiplier theorems for p 6= q
which use R-boundedness.
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Fourier type

Problem

What are sufficient conditions on m such that m ∈Mp,q(X )?

X has Fourier type p ∈ [1, 2] if F : Lp(R; X )→ Lp′(R; X ) is bounded.
There is also an (Lp, Lp′) Fourier multiplier theorem using Fourier type.
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Stability using Fourier type

Let Xγ := D((ω + A)γ) for γ ≥ 0 and ω large.

Corollary

Let X have Fourier type p ∈ [1, 2], and let α ≥ 0. Suppose that

‖(λ+ A)−1‖L(X ) = O(Re(λ)−α)

as Re(λ) ↓ 0. Then, for each γ > 1
p −

1
p′ ,

‖T (t)‖L(Xγ ,X ) = O(tα)

as t →∞.

For p = 1: general Banach spaces.
Eisner–Zwart (2006): need to consider γ > 0 for p = 1.
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Unstable wave equation

Theorem

Consider the perturbed wave equation

utt = uxx + uyy + e−iyux

on T2, formulated as an ACP on X = H1(T2)× L2(T2). Let (T (t))t≥0 be
the associated group. Then

‖T (t)‖L(X ) = O(|t|e |t|/2) as |t| → ∞.

Sharp up to possible polynomial loss.
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Take-home message

1 Various types of (asymptotic) behavior of semigroups can be
characterized using (Lp, Lq) Fourier multiplier properties of the
resolvent (consider also p 6= q).

2 Then (Lp, Lq) Fourier multiplier theorems yield semigroup results
(consider also p 6= q).
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