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A convolution semigroup of probability measures {p;, t > 0} is called
(isotropic) unimodal if p:(dx) = p:(|x|)dx are unimodal.

By [Watanabe 1983] such semigroup has unimodal Lévy measure v:
/ e/&¥) p(x)dx = e t¥(E), £ €RY,
Rd
where (the Lévy-Khintchine exponent is)

09 = [ (1= cos(€x)) wllxl)eb + aleP

Consider a = 0 and Ly(x) = PV [pa(e(x + y) — @(x))v(y)dy.
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= [ -, azo

Note the convolution semigroup {v:} on [0, c0) such that
I e ye(s)ds = e~ t¢(N) and

pe(x) :/ gs(x)ve(s)ds, x € R? t>0.
0

We will assume p;(0) = (27)79/2 [oy e T¥E)d¢ < 0.
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By Bs

Expectation: E, := [, dP.

Let D C R? be open, 7p :=inf{t > 0: X; ¢ D} (exit/ruin time),

PR = Bult < 70i (X)) = [ FRPx.y)dy.

Gol(x,y) == /0 pP(x, y)dr.
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|
Dirichlet heat kernel for D by Hunt's formula

ptD(Xv.y) = Pt(y *X) —Ex [TD <t Ptf‘rD(y - XTD)]

E.g., probability for X to survive time t is Px(1p > t) = [ pP(x,y)dy.
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|
Simulated trajectory t — X;, fora =18, d =2
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lkeda-Watanabe formula
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If x € D, then the Py joint density function of (7p, X;,—, X;,) is:

(0,00) x D x (D) 3 (s, u,2) = p2(x, u)v(z — u).
Marginals are interesting, too. For instance:

Py(Xr, € A) = / Gp(x, u)v(A — u)du if dist(A, D) > 0.
D
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We always assume here that 0 < a < @ < 2 (subcritical).

Scaling conditions are called global if § = 0 or § = 0.

Example: relativistic a-stable process, 0 < a < 2:

(€)= (€2 + 1)/ — 1 ~ ¢ A €] has LS(a, 0), US(a, 1)

Example: (&) = €)% 4 [£]® =~ |€]° v |€]%, where 0 < f < o < 2.
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If (subcritical) LS and US hold, then locally (or globally) in space and time,

pe(x) ~ 1 (1/8)7 A wﬁfjx’) ~ pe(0) A ti(x).

Also: v(x) ~ 1(1/|x|)|x|~9, locally or globally, respectively.

Example: X; = X,_Sa) +X§ﬂ), 0 < 8 < a <2 (Chen, Kumagai 2008);

1 1
o s —d —d/p d
pt(X)len{t fent /’t<|x|d+a+|x|d+ﬁ>}’ t>0, xR
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For unimodal probability convolution semigroup {p;} on RY, with
Lévy-Khintchine exponent 1 and Lévy measure density v, TFAE:

subcritical LS and US |variant: global LS and US| hold for 1).
For some ry € (0, 00) [variant: ry = o],
tip(1/Ix[)

pt(X)ZCT, 0< |X’<ro,0<t¢(1/|x|)<1

For some ry € (0, 00) |variant: ry = 0|,

v(x) > CW, 0 < |x] < ro.

Observe T. Grzywny [2016-] and A. Mimica [2018] for critical scalings...
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The Dirichlet heat kernel

P (x,y)
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We consider the ascending ladder-height process of the one-dimensional
projections of X, i.e., n; := X (L;1), and

V(x) = Eo/ 110,.(ne)dt, x > 0.
0
Silverstein studied V and V/ in 1980.

.6, if 9(€) = [€]*, a € (0,2), then V(x) = x/2 V/(x) = § x2/*

[Pruitt 1981, Schilling 1998, Grzywny, Ryznar 2012]: V(u) ~ 1//¢(1/u).

Corollary: If ¢ € LS(e,0) N US(@, 0) (global subcritical scalings), then

_ - t d
p(x) = VIV P A ———— t>0, xeRY
' V2([x[)Ix|¢
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We let g(x) = ¢(|x|/r), with ¢ : [0, 00) — [0, 1] such that ¢(u) = 0 for
0<u<1/2 ¢(u)=1foru>1, and

1
4sup ¢ (u)| + 5 sup[¢”(u)] = 24
u>0 2u20
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|
Dynkin approximate operator (orientation: A, — A D L)

Let Acg(x) = Ex[g(Xrg...)) — 8(X)]/ExTB(x,c) Where € > 0.

We assume a certain Harnack-type condition (H) on V.

Let xo € R?, r > 0 and g(x) = V(0B(x,r)(x))- Then,

. C .
0 <limsup._,o [ —~Acg(x)] < %0 if 0 <0p(x,r)(x) < r/4.
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Applications of superharmonic functions (barriers)

If (H) holds, then s,(x) := E,1p. ~ V(g,(x))V(r), x€R9. J
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Applications of superharmonic functions (barriers)

If (H) holds, then s,(x) := E,1p. ~ V(g,(x))V(r), x€R9.

Note As, = —1 on B,.

We similarly construct and utilize subharmonic functions for complement of

the ball...

Lipschitz domains require different tools...
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Bounded domains: some spectral theory

If D is an open bounded set and p;(0) is bounded for every t > 0, then the
integral operators on L2(D) with kernels p?(x,y) < p;(0) are compact.
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Bounded domains: some spectral theory

If D is an open bounded set and p;(0) is bounded for every t > 0, then the
integral operators on L2(D) with kernels p?(x,y) < p;(0) are compact.

The eigenvalues 0 < A1 < A < ... and the orthonormal basis of
eigenfunctions ¢1 > 0, ¢, ¢3. .. satisfy

dk(x) = e)‘kt/ptD(X,z)qﬁk(z)dz.
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N
Bounded smooth D

If v has LS and US and D C RY is a bounded C1'1 open set, then

PtD(X7}’) ~ Py(TD > t/2) pinte(x — y) Py(1p > t/2),

forall t >0, x,y € D, and we have

where to = V?(nry), and ry > 0 is sufficiently small.
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Exterior domains

Let ¢ € LS(a,0) NUS(@,0) and d > @. Let D be a CHY at scale r and
D€ C Bg. Forall x,y € RY and t > 0 we have

pL(x,y) = Py(1p > t) pe(x — y) Py(7p > t),

and

IPX(TD>t)~M/\1

VEAV(r)
with comparability constants C = C(d, v, R/r).
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Exterior domains: examples

Example: Let (¢) = |€|*, o € (0,2), and D = B(0,1) . Then,

ptD(Xa)/) ~ ]P)X(TD > t) Pt(X *y) Py(TD > t),

for all x,y € R? and t > 0,
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Exterior domains: examples

Example: Let ¢(¢) = [€]%, a € (0,2), and D = B(0,1)". Then,
ptD(Xa)/) ~ ]P)X(TD > t) Pt(X *y) Py(TD > t),

for all x,y € R? and t > 0, and

5272 (x) .
1/\1/\t1/2’ if a <d,
P ~? 1 log(1+65/%(x)) o d1
X(TD > t) ~ A log(1+t1/2) > mo=d=1,
53 1 X o o .
L W (tl/ V (SD(X)) /2, ifa>d=1.
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Halfspace-like domains

Let 1) satisfy global LS and US, H, := {(x1,...,xq) : Xg > a}.
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Let 1) satisfy global LS and US, H, := {(x1,...,xq) : Xg > a}.

Let D be CY! at scale R and H, C D C Hy. For all x,y € RY and t > 0,

PP (x,y) = Pu(1p > t) pe(x — y) Py(7p > 1),

where Py (mp > t) = AL

V(9p(x))
NG
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Examples of semigroups/generators/processes covered:

Isotropic stable processes
Relativistic stable processes

Sums of independent isotropic stable processes
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Examples of semigroups/generators/processes covered:

Isotropic stable processes

Relativistic stable processes

Sums of independent isotropic stable processes

See [R. Schilling, R. Song and Z. Vondracek. 2012] for much more
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pP(x,y) = / / Pra(x, 2)pE)o (2, w)p)4(w, y)dzdw

p2(0) [ pBalx.2)dz [ pBuw,y)d.

IN

For every symmetric Lévy process in R which is not compound Poisson,

V(%)
\/E Y

Py(T(0,00) = 1) = 1A t>0,xeR.
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|
On upper bound of the Dirichlet kernel

Consider open D1, D3 C D such that dist(Dy, D3) > 0. Let
D, =D\ (D1UD3). Ifxe D1,y € Dy and t > 0, then

pP(x,y) < Px(Xep €D2) sup p(s,z,y)
s<t,zeD,

+ (tAEymp,) sup v(z—u).
ueDy,z€eD3
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On lower bound of the Dirichlet kernel

Consider open Dy, D3 C D such that dist(Dy, D3) > 0. Let
Dy =D\ (D1UDs). Ifx€ Dy, y € D3 and t > 0, then

D .
> —u).
pr (x,y) > tPy(1p, > t)Py(7p, > t) uGDllr,]EED3 v(z — u)
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