Heat kernel of isotropic nonlocal operators

Krzysztof Bogdan (Tomasz Grzywny, Michał Ryznar)

Wrocław University of Science and Technology

Semigroups of Operators: Theory and Applications Kazimierz Dolny, October 4, 2018

The talk is based on 3 papers (2014-2015):

Density and tails of unimodal convolution semigroups, JFA Barriers, exit time and survival pr. for unimodal Lévy processes, PTRF Dirichlet heat kernel for unimodal Lévy processes, SPA

Heat kernel of isotropic nonlocal operators

Krzysztof Bogdan (Tomasz Grzywny, Michał Ryznar)

Wrocław University of Science and Technology

Semigroups of Operators: Theory and Applications Kazimierz Dolny, October 4, 2018

The talk is based on 3 papers (2014-2015):

Density and tails of unimodal convolution semigroups, JFA Barriers, exit time and survival pr. for unimodal Lévy processes, PTRF Dirichlet heat kernel for unimodal Lévy processes, SPA

• A measure on \mathbb{R}^d is (isotropic) unimodal if it has a finite radially nonincreasing density function on $\mathbb{R}^d \setminus \{0\}$.

- A measure on \mathbb{R}^d is (isotropic) unimodal if it has a finite radially nonincreasing density function on $\mathbb{R}^d \setminus \{0\}$.
- A convolution semigroup of probability measures $\{p_t, t > 0\}$ is called (isotropic) unimodal if $p_t(dx) = p_t(|x|)dx$ are unimodal.

- A measure on \mathbb{R}^d is (isotropic) unimodal if it has a finite radially nonincreasing density function on $\mathbb{R}^d \setminus \{0\}$.
- A convolution semigroup of probability measures $\{p_t, t > 0\}$ is called (isotropic) unimodal if $p_t(dx) = p_t(|x|)dx$ are unimodal.
- By [Watanabe 1983] such semigroup has unimodal Lévy measure ν :

$$\int_{\mathbb{R}^d} e^{i\langle \xi, x \rangle} p_t(x) dx = e^{-t\psi(\xi)}, \qquad \xi \in \mathbb{R}^d,$$

where (the Lévy-Khintchine exponent is)

$$\psi(\xi) = \int_{\mathbb{R}^d} \left(1 - \cos\langle \xi, x \rangle\right) \nu(|x|) dx + a|\xi|^2.$$

- A measure on \mathbb{R}^d is (isotropic) unimodal if it has a finite radially nonincreasing density function on $\mathbb{R}^d \setminus \{0\}$.
- A convolution semigroup of probability measures $\{p_t, t > 0\}$ is called (isotropic) unimodal if $p_t(dx) = p_t(|x|)dx$ are unimodal.
- By [Watanabe 1983] such semigroup has unimodal Lévy measure ν :

$$\int_{\mathbb{R}^d} e^{i\langle \xi, x \rangle} p_t(x) dx = e^{-t\psi(\xi)}, \qquad \xi \in \mathbb{R}^d,$$

where (the Lévy-Khintchine exponent is)

$$\psi(\xi) = \int_{\mathbb{R}^d} \left(1 - \cos\langle \xi, x \rangle\right) \nu(|x|) dx + a|\xi|^2.$$

- A measure on \mathbb{R}^d is (isotropic) unimodal if it has a finite radially nonincreasing density function on $\mathbb{R}^d \setminus \{0\}$.
- A convolution semigroup of probability measures $\{p_t, t > 0\}$ is called (isotropic) unimodal if $p_t(dx) = p_t(|x|)dx$ are unimodal.
- By [Watanabe 1983] such semigroup has unimodal Lévy measure ν :

$$\int_{\mathbb{R}^d} e^{i\langle \xi, x \rangle} p_t(x) dx = e^{-t\psi(\xi)}, \qquad \xi \in \mathbb{R}^d,$$

where (the Lévy-Khintchine exponent is)

$$\psi(\xi) = \int_{\mathbb{R}^d} \left(1 - \cos\langle \xi, x \rangle\right) \nu(|x|) dx + a|\xi|^2.$$

• Consider a=0 and $L\varphi(x)=PV\int_{\mathbb{R}^d}(\varphi(x+y)-\varphi(x))\nu(y)dy$.

• Fractional Laplacian: $L = -(-\Delta)^{\alpha/2}$: $\nu(x) = c|x|^{-d-\alpha}$, $\psi(\xi) = |\xi|^{\alpha}$.

- Fractional Laplacian: $L = -(-\Delta)^{\alpha/2}$: $\nu(x) = c|x|^{-d-\alpha}$, $\psi(\xi) = |\xi|^{\alpha}$.
- Truncated fractional Laplacian: $\nu(r) = c \ r^{-d-\alpha} \mathbf{1}_{0 < r < 1}$.

- Fractional Laplacian: $L = -(-\Delta)^{\alpha/2}$: $\nu(x) = c|x|^{-d-\alpha}$, $\psi(\xi) = |\xi|^{\alpha}$.
- Truncated fractional Laplacian: $\nu(r) = c r^{-d-\alpha} \mathbf{1}_{0 < r < 1}$.
- Subordinated Gaussian semigroups: $\nu(x) = \int_0^\infty g_s(x)\mu(ds)$, $\psi(\xi) = \phi(|x|^2)$. Here g is the Gauss-Weierstrass kernel, and

$$\varphi(\lambda) = \int_0^\infty (1 - e^{-\lambda s}) \mu(ds), \quad \lambda \ge 0.$$

- Fractional Laplacian: $L=-(-\Delta)^{\alpha/2}$: $\nu(x)=c|x|^{-d-\alpha}$, $\psi(\xi)=|\xi|^{\alpha}$.
- Truncated fractional Laplacian: $\nu(r) = c r^{-d-\alpha} \mathbf{1}_{0 < r < 1}$.
- Subordinated Gaussian semigroups: $\nu(x) = \int_0^\infty g_s(x)\mu(ds)$, $\psi(\xi) = \phi(|x|^2)$. Here g is the Gauss-Weierstrass kernel, and

$$\varphi(\lambda) = \int_0^\infty (1 - e^{-\lambda s}) \mu(ds), \quad \lambda \ge 0.$$

Note the convolution semigroup $\{\gamma_t\}$ on $[0,\infty)$ such that $\int_0^\infty e^{-\lambda s} \gamma_t(s) ds = e^{-t\varphi(\lambda)}$ and

$$p_t(x) = \int_0^\infty g_s(x)\gamma_t(s)ds, \quad x \in \mathbb{R}^d, \ t > 0.$$

- Fractional Laplacian: $L=-(-\Delta)^{\alpha/2}$: $\nu(x)=c|x|^{-d-\alpha}$, $\psi(\xi)=|\xi|^{\alpha}$.
- Truncated fractional Laplacian: $\nu(r) = c r^{-d-\alpha} \mathbf{1}_{0 < r < 1}$.
- Subordinated Gaussian semigroups: $\nu(x) = \int_0^\infty g_s(x)\mu(ds)$, $\psi(\xi) = \phi(|x|^2)$. Here g is the Gauss-Weierstrass kernel, and

$$\varphi(\lambda) = \int_0^\infty (1 - e^{-\lambda s}) \mu(ds), \quad \lambda \ge 0.$$

Note the convolution semigroup $\{\gamma_t\}$ on $[0,\infty)$ such that $\int_0^\infty e^{-\lambda s} \gamma_t(s) ds = e^{-t\varphi(\lambda)}$ and

$$p_t(x) = \int_0^\infty g_s(x)\gamma_t(s)ds, \quad x \in \mathbb{R}^d, \ t > 0.$$

• We will assume $p_t(0)=(2\pi)^{-d/2}\int_{\mathbb{R}^d}e^{-t\psi(\xi)}\mathrm{d}\xi<\infty.$

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty)\to\mathbb{R}^d$.

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty) o \mathbb{R}^d.$

For $x \in \mathbb{R}^d$ define (by Kolmogorov) probability \mathbb{P}_x on Ω via

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}) = \int_{B_{1}} p_{t_{1}}(x_{1}-x) \cdots \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n}-x_{n-1}) dx_{n} \cdots dx_{1}.$$

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty) \to \mathbb{R}^d$.

For $x \in \mathbb{R}^d$ define (by Kolmogorov) probability \mathbb{P}_x on Ω via

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}) = \int_{B_{1}} p_{t_{1}}(x_{1}-x) \cdots \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n}-x_{n-1}) dx_{n} \cdots dx_{1}.$$

Expectation: $\mathbb{E}_{\mathsf{x}} := \int_{\Omega} d\mathbb{P}_{\mathsf{x}}$.

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty) o \mathbb{R}^d.$

For $x \in \mathbb{R}^d$ define (by Kolmogorov) probability \mathbb{P}_x on Ω via

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}) = \int_{B_{1}} p_{t_{1}}(x_{1}-x) \cdots \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n}-x_{n-1}) dx_{n} \cdots dx_{1}.$$

Expectation: $\mathbb{E}_x := \int_{\Omega} d\mathbb{P}_x$.

Let $D \subset \mathbb{R}^d$ be open, $\tau_D := \inf\{t > 0 : X_t \notin D\}$ (exit/ruin time),

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty) \to \mathbb{R}^d$.

For $x \in \mathbb{R}^d$ define (by Kolmogorov) probability \mathbb{P}_x on Ω via

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}) = \int_{B_{1}} p_{t_{1}}(x_{1}-x) \cdots \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n}-x_{n-1}) dx_{n} \cdots dx_{1}.$$

Expectation: $\mathbb{E}_{\mathsf{x}} := \int_{\Omega} d\mathbb{P}_{\mathsf{x}}$.

Let $D \subset \mathbb{R}^d$ be open, $\tau_D := \inf\{t > 0 : X_t \notin D\}$ (exit/ruin time),

$$P_t^D f(x) := \mathbb{E}_x[t < \tau_D; f(X_t)] = \int_{\mathbb{R}^d} f(y) \rho_t^D(x, y) \mathrm{d}y,$$

Let Ω be the class of càdlàg functions (trajectories) $X:[0,\infty)\to\mathbb{R}^d$.

For $x \in \mathbb{R}^d$ define (by Kolmogorov) probability \mathbb{P}_x on Ω via

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}) = \int_{B_{1}} p_{t_{1}}(x_{1}-x) \cdots \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n}-x_{n-1}) dx_{n} \cdots dx_{1}.$$

Expectation: $\mathbb{E}_{\mathsf{x}} := \int_{\Omega} d\mathbb{P}_{\mathsf{x}}$.

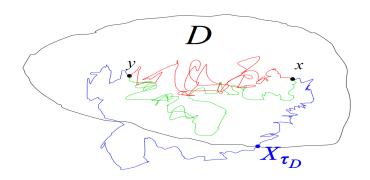
Let $D \subset \mathbb{R}^d$ be open, $\tau_D := \inf\{t > 0 : X_t \notin D\}$ (exit/ruin time),

$$P_t^D f(x) := \mathbb{E}_x[t < \tau_D; f(X_t)] = \int_{\mathbb{D}^d} f(y) p_t^D(x, y) \mathrm{d}y,$$

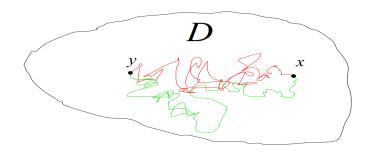
$$G_D(x,y) := \int_0^\infty p_t^D(x,y) dt.$$

$$p_t^D(x,y) := p_t(y-x) - \mathbb{E}_x \left[\tau_D \le t; \; p_{t-\tau_D}(y-X_{\tau_D}) \right]$$

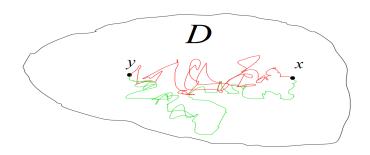
$$p_t^D(x,y) := p_t(y-x) - \mathbb{E}_x \left[\tau_D \le t; \; p_{t-\tau_D}(y-X_{\tau_D}) \right]$$



$$p_t^D(x,y) := p_t(y-x) - \mathbb{E}_x \left[\tau_D \le t; \; p_{t-\tau_D}(y-X_{\tau_D}) \right]$$

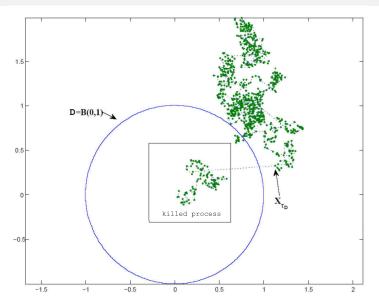


$$p_t^D(x,y) := p_t(y-x) - \mathbb{E}_x \left[\tau_D \le t; \; p_{t-\tau_D}(y-X_{\tau_D}) \right]$$



E.g., probability for X to survive time t is $\mathbb{P}_{x}(\tau_{D} > t) = \int p_{t}^{D}(x, y)dy$.

Simulated trajectory $t \mapsto X_t$, for $\alpha = 1.8$, d = 2



Ikeda-Watanabe formula

If $x \in D$, then the \mathbb{P}_x joint density function of $(\tau_D, X_{\tau_D-}, X_{\tau_D})$ is:

$$(0,\infty)\times D\times \left(\overline{D}\right)^c\ni (s,u,z)\mapsto p_s^D(x,u)\nu(z-u).$$

Ikeda-Watanabe formula

If $x \in D$, then the \mathbb{P}_x joint density function of $(\tau_D, X_{\tau_D-}, X_{\tau_D})$ is:

$$(0,\infty)\times D\times \left(\overline{D}\right)^c\ni (s,u,z)\mapsto p_s^D(x,u)\nu(z-u).$$

Marginals are interesting, too. For instance:

Ikeda-Watanabe formula

If $x \in D$, then the \mathbb{P}_x joint density function of $(\tau_D, X_{\tau_D-}, X_{\tau_D})$ is:

$$(0,\infty) \times D \times (\overline{D})^c \ni (s,u,z) \mapsto p_s^D(x,u)\nu(z-u).$$

Marginals are interesting, too. For instance:

$$\mathbb{P}_{x}(X_{\tau_{D}} \in A) = \int_{D} G_{D}(x, u) \nu(A - u) du \quad \text{if } \operatorname{dist}(A, D) > 0.$$

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

Below $f \approx g$ means that $c^{-1}g(x) \leq f(x) \leq cg(x)$ for all x. Goal: Estimate p and p^D .

• Zhang (2002) - smooth domains, Δ (kind-of-sharp...)

Below $f \approx g$ means that $c^{-1}g(x) \leq f(x) \leq cg(x)$ for all x. Goal: Estimate p and p^D .

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$

Below $f \approx g$ means that $c^{-1}g(x) \leq f(x) \leq cg(x)$ for all x. Goal: Estimate p and p^D .

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- ullet Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{lpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{lpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- 3 presented papers on unimodal with scaling

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- · 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- · 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal
- Kulczycki, Ryznar (2016, 2018) gradient estimates

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- · 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal
- Kulczycki, Ryznar (2016, 2018) gradient estimates
- Małecki, Serafin (2016) heat kernel of the ball for Δ (sharp)

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- · 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal
- Kulczycki, Ryznar (2016, 2018) gradient estimates
- Małecki, Serafin (2016) heat kernel of the ball for Δ (sharp)
- Grzywny, Leżaj (2018) subordinators

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal
- Kulczycki, Ryznar (2016, 2018) gradient estimates
- Małecki, Serafin (2016) heat kernel of the ball for Δ (sharp)
- Grzywny, Leżaj (2018) subordinators
- Grzywny, Szczypkowski, Bogdan, Sztonyk, Knopova, Kim, Chen, Kulik... - nonconstant coefficients, nonsymmetric...

Below $f \approx g$ means that $c^{-1}g(x) \le f(x) \le cg(x)$ for all x.

- Zhang (2002) smooth domains, Δ (kind-of-sharp...)
- Chen, Kim, Song (2010), bounded smooth domains, $\Delta^{\alpha/2}$
- Bogdan, Grzywny, Ryznar (2010), Lipschitz domains, $\Delta^{\alpha/2}$
- Chen, Kim, Song (2012-2014) smooth domains, subclasses of sGs
- 3 presented papers on unimodal with scaling
- Cygan, Grzywny, Trojan (2015) asymptotics
- Grzywny, Ryznar, Trojan (2016) slowly varying unimodal
- Kulczycki, Ryznar (2016, 2018) gradient estimates
- Małecki, Serafin (2016) heat kernel of the ball for Δ (sharp)
- Grzywny, Leżaj (2018) subordinators
- Grzywny, Szczypkowski, Bogdan, Sztonyk, Knopova, Kim, Chen, Kulik... - nonconstant coefficients, nonsymmetric...

Let
$$\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$$
.

Let $\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Let
$$\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$$
. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Let $\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition: $\psi \in LS(\underline{\alpha}, \underline{\theta})$ if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Let $\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition: $\psi \in LS(\underline{\alpha}, \underline{\theta})$ if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Definition: $\psi \in US(\overline{\alpha}, \overline{\theta})$ if $(\overline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\overline{\alpha}}$ almost decreases.

Let $\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition: $\psi \in LS(\underline{\alpha}, \underline{\theta})$ if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Definition: $\psi \in US(\overline{\alpha}, \overline{\theta})$ if $(\overline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\overline{\alpha}}$ almost decreases.

We always assume here that $0 < \underline{\alpha} \leq \overline{\alpha} < 2$ (subcritical).

Let
$$\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$$
. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition: $\psi \in LS(\underline{\alpha}, \underline{\theta})$ if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Definition: $\psi \in US(\overline{\alpha}, \overline{\theta})$ if $(\overline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\overline{\alpha}}$ almost decreases.

We always assume here that $0 < \underline{\alpha} \le \overline{\alpha} < 2$ (subcritical).

Scaling conditions are called **global if** $\underline{\theta} = 0$ or $\overline{\theta} = 0$.

Let
$$\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$$
. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition: $\psi \in LS(\underline{\alpha}, \underline{\theta})$ if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Definition: $\psi \in US(\overline{\alpha}, \overline{\theta})$ if $(\overline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\overline{\alpha}}$ almost decreases.

We always assume here that $0 < \underline{\alpha} \leq \overline{\alpha} < 2$ (subcritical).

Scaling conditions are called **global if** $\underline{\theta} = 0$ or $\overline{\theta} = 0$.

Example: relativistic α -stable process, $0 < \alpha < 2$:

$$\psi(\xi) = (|\xi|^2 + 1)^{\alpha/2} - 1 \approx |\xi|^2 \wedge |\xi|^{\alpha} \text{ has LS}(\alpha, 0), \text{ US}(\alpha, 1).$$

Let
$$\psi^*(u) = \sup_{0 \le r \le u} \psi(r)$$
. We have $\psi(u) \le \psi^*(u) \le \pi^2 \psi(u)$, $u \ge 0$.

Thus $\psi \approx \psi^*$, and we call ψ almost increasing.

Definition:
$$\psi \in LS(\underline{\alpha}, \underline{\theta})$$
 if $(\underline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\underline{\alpha}}$ almost increases.

Definition:
$$\psi \in US(\overline{\alpha}, \overline{\theta})$$
 if $(\overline{\theta}, \infty) \ni u \mapsto \psi(u)/u^{\overline{\alpha}}$ almost decreases.

We always assume here that
$$0 < \underline{\alpha} \leq \overline{\alpha} < 2$$
 (subcritical).

Scaling conditions are called **global if**
$$\underline{\theta} = 0$$
 or $\overline{\theta} = 0$.

Example: relativistic
$$\alpha$$
-stable process, $0 < \alpha < 2$:

$$\psi(\xi) = (|\xi|^2 + 1)^{\alpha/2} - 1 \approx |\xi|^2 \wedge |\xi|^{\alpha} \text{ has LS}(\alpha, 0), \text{ US}(\alpha, 1).$$

Example:
$$\psi(\xi) = |\xi|^{\beta} + |\xi|^{\alpha} \approx |\xi|^{\beta} \vee |\xi|^{\alpha}$$
, where $0 < \beta < \alpha < 2$.

"Common bounds" for isotropic semigroups with scalings

Theorem (Bogdan, Grzywny, Ryznar (2014))

If (subcritical) ${\rm LS}$ and ${\rm US}$ hold, then locally (or globally) in space and time,

$$p_t(x) \approx \psi^{-1}(1/t)^d \wedge \frac{t\psi(1/|x|)}{|x|^d} \approx p_t(0) \wedge t\nu(x).$$

"Common bounds" for isotropic semigroups with scalings

Theorem (Bogdan, Grzywny, Ryznar (2014))

If (subcritical) ${\rm LS}$ and ${\rm US}$ hold, then locally (or globally) in space and time,

$$p_t(x) pprox \psi^{-1}(1/t)^d \wedge \frac{t\psi(1/|x|)}{|x|^d} pprox p_t(0) \wedge t\nu(x).$$

Also: $\nu(x) \approx \psi(1/|x|)|x|^{-d}$, locally or globally, respectively.

"Common bounds" for isotropic semigroups with scalings

Theorem (Bogdan, Grzywny, Ryznar (2014))

If (subcritical) ${\rm LS}$ and ${\rm US}$ hold, then locally (or globally) in space and time,

$$p_t(x) pprox \psi^{-1}(1/t)^d \wedge \frac{t\psi(1/|x|)}{|x|^d} pprox p_t(0) \wedge t\nu(x).$$

Also: $\nu(x) \approx \psi(1/|x|)|x|^{-d}$, locally or globally, respectively.

Example:
$$X_t = X_t^{(\alpha)} + X_t^{(\beta)}$$
, $0 < \beta < \alpha < 2$ (Chen, Kumagai 2008);

$$p_t(x) \approx \min \left\{ t^{-d/\alpha} \wedge t^{-d/\beta}, \ t \left(\frac{1}{|x|^{d+\alpha}} + \frac{1}{|x|^{d+\beta}} \right) \right\}, \quad t > 0, x \in \mathbb{R}^d.$$

For unimodal probability convolution semigroup $\{p_t\}$ on \mathbb{R}^d , with Lévy-Khintchine exponent ψ and Lévy measure density ν , TFAE:

(i) subcritical LS and US [variant: global LS and US] hold for ψ .

For unimodal probability convolution semigroup $\{p_t\}$ on \mathbb{R}^d , with Lévy-Khintchine exponent ψ and Lévy measure density ν , TFAE:

- (i) subcritical LS and US [variant: global LS and US] hold for ψ .
- (ii) For some $r_0 \in (0, \infty)$ [variant: $r_0 = \infty$],

$$p_t(x) \ge c \frac{t\psi(1/|x|)}{|x|^d}, \qquad 0 < |x| < r_0, \ 0 < t\psi(1/|x|) < 1.$$

For unimodal probability convolution semigroup $\{p_t\}$ on \mathbb{R}^d , with Lévy-Khintchine exponent ψ and Lévy measure density ν , TFAE:

- (i) subcritical LS and US [variant: global LS and US] hold for ψ .
- (ii) For some $r_0 \in (0, \infty)$ [variant: $r_0 = \infty$],

$$p_t(x) \ge c \frac{t\psi(1/|x|)}{|x|^d}, \qquad 0 < |x| < r_0, \ 0 < t\psi(1/|x|) < 1.$$

(iii) For some
$$r_0 \in (0, \infty)$$
 [variant: $r_0 = \infty$],

$$\nu(x) \ge c \frac{\psi(1/|x|)}{|x|^d}, \qquad 0 < |x| < r_0.$$

For unimodal probability convolution semigroup $\{p_t\}$ on \mathbb{R}^d , with Lévy-Khintchine exponent ψ and Lévy measure density ν , TFAE:

- (i) subcritical LS and US [variant: global LS and US] hold for ψ .
- (ii) For some $r_0 \in (0, \infty)$ [variant: $r_0 = \infty$],

$$p_t(x) \ge c \frac{t\psi(1/|x|)}{|x|^d}, \qquad 0 < |x| < r_0, \ 0 < t\psi(1/|x|) < 1.$$

(iii) For some $r_0 \in (0, \infty)$ [variant: $r_0 = \infty$],

$$\nu(x) \ge c \frac{\psi(1/|x|)}{|x|^d}, \qquad 0 < |x| < r_0.$$

Observe T. Grzywny [2016-] and A. Mimica [2018] for critical scalings...

The Dirichlet heat kernel

$$p_t^D(x,y)$$

We consider the ascending ladder-height process of the one-dimensional projections of X,

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$,

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$, and

$$V(x) := \mathbb{E}_0 \int_0^\infty \mathbf{1}_{[0,x]}(\eta_t) dt, \qquad x \ge 0.$$

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$, and

$$V(x):=\mathbb{E}_0\int_0^\infty \mathbf{1}_{[0,x]}(\eta_t)dt, \qquad x\geq 0.$$

Silverstein studied V and V' in 1980.

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$, and

$$V(x):=\mathbb{E}_0\int_0^\infty \mathbf{1}_{[0,x]}(\eta_t)dt, \qquad x\geq 0.$$

Silverstein studied V and V' in 1980.

E.g., if
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, then $V(x) = x_{+}^{\alpha/2}$, $V'(x) = \frac{\alpha}{2} x_{+}^{\alpha/2-1}$.

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$, and

$$V(x):=\mathbb{E}_0\int_0^\infty \mathbf{1}_{[0,x]}(\eta_t)dt, \qquad x\geq 0.$$

Silverstein studied V and V' in 1980.

E.g., if
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, then $V(x) = x_{+}^{\alpha/2}$, $V'(x) = \frac{\alpha}{2} x_{+}^{\alpha/2-1}$.

[Pruitt 1981, Schilling 1998, Grzywny, Ryznar 2012]: $V(u) \approx 1/\sqrt{\psi(1/u)}$.

We consider the ascending ladder-height process of the one-dimensional projections of X, i.e., $\eta_t := X^{(1)}(L_t^{-1})$, and

$$V(x):=\mathbb{E}_0\int_0^\infty \mathbf{1}_{[0,x]}(\eta_t)dt, \qquad x\geq 0.$$

Silverstein studied V and V' in 1980.

E.g., if
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, then $V(x) = x_{+}^{\alpha/2}$, $V'(x) = \frac{\alpha}{2} x_{+}^{\alpha/2-1}$.

[Pruitt 1981, Schilling 1998, Grzywny, Ryznar 2012]:
$$V(u) \approx 1/\sqrt{\psi(1/u)}$$
.

Corollary: If $\psi \in LS(\underline{\alpha}, 0) \cap US(\overline{\alpha}, 0)$ (global subcritical scalings), then

$$p_t(x) \approx V^{-1}(\sqrt{t})^{-d} \wedge \frac{t}{V^2(|x|)|x|^d}, \qquad t > 0, x \in \mathbb{R}^d.$$

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

and we have

$$h(1/u) \approx \psi(u) \approx \frac{1}{V^2(1/u)}.$$

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

and we have

$$h(1/u) \approx \psi(u) \approx \frac{1}{V^2(1/u)}.$$

Lemma

If
$$r > 0$$
 and $x \in B_{r/2}$, then $\mathbb{P}_x(|X_{\tau_D}| \ge r) \le 24 h(r) \mathbb{E}_x \tau_D$.

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

and we have

$$h(1/u) \approx \psi(u) \approx \frac{1}{V^2(1/u)}.$$

Lemma

If
$$r > 0$$
 and $x \in B_{r/2}$, then $\mathbb{P}_x(|X_{\tau_D}| \ge r) \le 24 \ h(r) \mathbb{E}_x \tau_D$.

This follows by Dynkin's formula:

$$\mathbb{E}_{x}g(X_{\tau_{D}})=g(x)+\mathbb{E}_{x}\int_{0}^{\tau_{D}}Lg(X_{s})ds,\quad x\in\mathbb{R}^{d}.$$

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

and we have

$$h(1/u) \approx \psi(u) \approx \frac{1}{V^2(1/u)}.$$

Lemma

If
$$r > 0$$
 and $x \in B_{r/2}$, then $\mathbb{P}_x(|X_{\tau_D}| \ge r) \le 24 h(r) \mathbb{E}_x \tau_D$.

This follows by Dynkin's formula:

$$\mathbb{E}_{x}g(X_{\tau_{D}})=g(x)+\mathbb{E}_{x}\int_{0}^{\tau_{D}}Lg(X_{s})ds,\quad x\in\mathbb{R}^{d}.$$

We let $g(x) = \phi(|x|/r)$, with $\phi : [0, \infty) \mapsto [0, 1]$ such that $\psi(u) = 0$ for $0 \le u \le 1/2$, $\phi(u) = 1$ for $u \ge 1$,

$$h(r) = \int_{\mathbb{R}^d} \min\{|z|^2/r^2, 1\} \nu(|z|) dz, \quad r > 0,$$

and we have

$$h(1/u) \approx \psi(u) \approx \frac{1}{V^2(1/u)}.$$

Lemma

If
$$r > 0$$
 and $x \in B_{r/2}$, then $\mathbb{P}_x(|X_{\tau_D}| \ge r) \le 24 h(r) \mathbb{E}_x \tau_D$.

This follows by Dynkin's formula:

$$\mathbb{E}_{x}g(X_{\tau_{D}})=g(x)+\mathbb{E}_{x}\int_{0}^{\tau_{D}}Lg(X_{s})ds,\quad x\in\mathbb{R}^{d}.$$

We let $g(x) = \phi(|x|/r)$, with $\phi : [0, \infty) \mapsto [0, 1]$ such that $\psi(u) = 0$ for 0 < u < 1/2, $\phi(u) = 1$ for u > 1, and

$$4 \sup_{u \ge 0} |\phi'(u)| + \frac{1}{2} \sup_{u \ge 0} |\phi''(u)| = 24.$$

Dynkin approximate operator (orientation: $\mathcal{A}_{\epsilon} o \mathcal{A} \supset \mathcal{L}$)

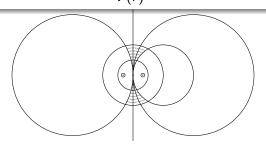
Let
$$\mathcal{A}_{\epsilon}g(x) = \mathbb{E}_{x}[g(X_{\tau_{B(x,\epsilon)}}) - g(x)]/\mathbb{E}_{x}\tau_{B(x,\epsilon)}$$
, where $\epsilon > 0$.

We assume a certain Harnack-type condition (H) on V'.

Theorem

Let
$$x_0 \in \mathbb{R}^d$$
, $r > 0$ and $g(x) = V(\delta_{B(x_0,r)}(x))$. Then,

$$0 \leq \limsup_{\epsilon \to 0} \left[-\mathcal{A}_{\epsilon} g(x) \right] \leq \frac{C}{V(r)} \qquad \text{if} \quad 0 < \delta_{B(x_0,r)}(x) < r/4.$$



Applications of superharmonic functions (barriers)

Corollary

If (H) holds, then $s_r(x) := \mathbb{E}_x \tau_{B_r} \approx V(\delta_{B_r}(x))V(r), \quad x \in \mathbb{R}^d$.

Applications of superharmonic functions (barriers)

Corollary

If (H) holds, then
$$s_r(x) := \mathbb{E}_x \tau_{B_r} \approx V(\delta_{B_r}(x))V(r), \quad x \in \mathbb{R}^d$$
.

Note $As_r = -1$ on B_r .

Applications of superharmonic functions (barriers)

Corollary

If (H) holds, then
$$s_r(x) := \mathbb{E}_x \tau_{B_r} \approx V(\delta_{B_r}(x))V(r), \quad x \in \mathbb{R}^d$$
.

Note $As_r = -1$ on B_r .

We similarly construct and utilize subharmonic functions for complement of the ball...

Applications of superharmonic functions (barriers)

Corollary

If (H) holds, then
$$s_r(x) := \mathbb{E}_x \tau_{B_r} \approx V(\delta_{B_r}(x))V(r), \quad x \in \mathbb{R}^d$$
.

Note $As_r = -1$ on B_r .

We similarly construct and utilize subharmonic functions for complement of the ball...

Lipschitz domains require different tools...

Bounded domains: some spectral theory

If D is an open bounded set and $p_t(0)$ is bounded for every t > 0, then the integral operators on $L^2(D)$ with kernels $p_t^D(x,y) \le p_t(0)$ are compact.

Bounded domains: some spectral theory

If D is an open bounded set and $p_t(0)$ is bounded for every t > 0, then the integral operators on $L^2(D)$ with kernels $p_t^D(x,y) \le p_t(0)$ are compact.

The eigenvalues $0<\lambda_1<\lambda_2\leq\dots$ and the orthonormal basis of eigenfunctions $\phi_1\geq 0,\phi_2,\phi_3\dots$ satisfy

$$\phi_k(x) = e^{\lambda_k t} \int p_t^D(x, z) \phi_k(z) dz.$$

Bounded smooth D

Theorem

If ψ has LS and US and $\mathsf{D} \subset \mathbb{R}^d$ is a bounded $\mathsf{C}^{1,1}$ open set, then

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t/2) \ p_{t \wedge t_0}(x-y) \ \mathbb{P}_y(\tau_D > t/2),$$

for all t > 0, $x, y \in D$, and we have

$$\mathbb{P}_{\scriptscriptstyle X}(au_D > t) pprox \mathrm{e}^{-\lambda_1 t} \left(rac{V(\delta_D(x))}{\sqrt{t \wedge t_0}} \wedge 1
ight),$$

where $t_0 = V^2(r_0)$, and $r_0 > 0$ is sufficiently small.

Exterior domains

Theorem (Bogdan, Grzywny, Ryznar (2014))

Let $\psi \in LS(\underline{\alpha}, 0) \cap US(\overline{\alpha}, 0)$ and $d > \overline{\alpha}$. Let D be a $C^{1,1}$ at scale r and $D^c \subset \overline{B_R}$. For all $x, y \in \mathbb{R}^d$ and t > 0 we have

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \ p_t(x-y) \ \mathbb{P}_y(\tau_D > t),$$

and

$$\mathbb{P}_{\mathsf{x}}(au_D > t) pprox rac{V(\delta_D(\mathsf{x}))}{\sqrt{t} \wedge V(r)} \wedge 1$$

with comparability constants $C = C(d, \psi, R/r)$.

Example: Let
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, and $D = \overline{B(0,1)}^{c}$. Then,
$$p_{t}^{D}(x,y) \approx \mathbb{P}_{x}(\tau_{D} > t) \ p_{t}(x-y) \ \mathbb{P}_{y}(\tau_{D} > t),$$
 for all $x,y \in \mathbb{R}^{d}$ and $t > 0$,

Example: Let
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, and $D = \overline{B(0,1)}^{c}$. Then, $p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \; p_t(x-y) \; \mathbb{P}_v(\tau_D > t)$,

for all $x, y \in \mathbb{R}^d$ and t > 0, and

$$\mathbb{P}_{ extit{x}}(au_D > t) pprox \left\{egin{array}{l} 1 \wedge rac{\delta_D^{lpha/2}(extit{x})}{1 \wedge t^{1/2}}, & extit{if } lpha < d, \end{array}
ight.$$

Example: Let
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, and $D = \overline{B(0,1)}^{c}$. Then,

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \ p_t(x-y) \ \mathbb{P}_y(\tau_D > t),$$

for all $x, y \in \mathbb{R}^d$ and t > 0, and

$$\mathbb{P}_{\scriptscriptstyle X}(au_D > t) pprox \left\{egin{array}{ll} 1 \wedge rac{\delta_D^{lpha/2}(x)}{1 \wedge t^{1/2}}, & ext{if } lpha < d, \ & 1 \wedge rac{\log(1 + \delta_D^{1/2}(x))}{\log(1 + t^{1/2})}, & ext{if } lpha = d = 1, \end{array}
ight.$$

Example: Let
$$\psi(\xi) = |\xi|^{\alpha}$$
, $\alpha \in (0,2)$, and $D = \overline{B(0,1)}^{c}$. Then,

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \ p_t(x-y) \ \mathbb{P}_y(\tau_D > t),$$

for all $x, y \in \mathbb{R}^d$ and t > 0, and

$$\mathbb{P}_{\mathbf{x}}(\tau_D > t) \approx \begin{cases} 1 \wedge \frac{\delta_D^{\alpha/2}(\mathbf{x})}{1 \wedge t^{1/2}}, & \text{if } \alpha < d, \\ \\ 1 \wedge \frac{\log(1 + \delta_D^{1/2}(\mathbf{x}))}{\log(1 + t^{1/2})}, & \text{if } \alpha = d = 1, \\ \\ \frac{\delta_D^{\alpha-1}(\mathbf{x}) \wedge \delta_D^{\alpha/2}(\mathbf{x})}{(t^{1/\alpha} \vee \delta_D(\mathbf{x}))^{\alpha-1}} \wedge (t^{1/\alpha} \vee \delta_D(\mathbf{x}))^{\alpha/2}, & \text{if } \alpha > d = 1. \end{cases}$$

Halfspace-like domains

Let ψ satisfy global LS and US, $\mathbb{H}_a := \{(x_1, \dots, x_d) : x_d > a\}.$

Halfspace-like domains

Let ψ satisfy global LS and US, $\mathbb{H}_a := \{(x_1, \dots, x_d) : x_d > a\}.$

Theorem (Bogdan, Grzywny, Ryznar (2014))

Let D be $C^{1,1}$ at scale R and $\mathbb{H}_a \subset D \subset \mathbb{H}_b$. For all $x,y \in \mathbb{R}^d$ and t > 0,

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \ p_t(x-y) \ \mathbb{P}_y(\tau_D > t),$$

Halfspace-like domains

Let
$$\psi$$
 satisfy global LS and US, $\mathbb{H}_a := \{(x_1, \dots, x_d) : x_d > a\}.$

Theorem (Bogdan, Grzywny, Ryznar (2014))

Let D be
$$C^{1,1}$$
 at scale R and $\mathbb{H}_a \subset D \subset \mathbb{H}_b$. For all $x,y \in \mathbb{R}^d$ and $t > 0$,

$$p_t^D(x,y) \approx \mathbb{P}_x(\tau_D > t) \ p_t(x-y) \ \mathbb{P}_y(\tau_D > t),$$

where
$$\mathbb{P}_{\mathsf{x}}(au_D > t) pprox rac{V(\delta_D(\mathsf{x}))}{\sqrt{t}} \wedge 1.$$

Examples of semigroups/generators/processes covered:

- Isotropic stable processes
- Relativistic stable processes
- Sums of independent isotropic stable processes

Examples of semigroups/generators/processes covered:

- Isotropic stable processes
- Relativistic stable processes
- Sums of independent isotropic stable processes
- See [R. Schilling, R. Song and Z. Vondraček. 2012] for much more

Lemma

$$p_t^D(x,y) \leq \mathbb{P}_x(\tau_D > t/4) \ p_{t/2}(0) \ \mathbb{P}_x(\tau_D > t/4).$$

Lemma

$$p_t^D(x,y) \leq \mathbb{P}_x(\tau_D > t/4) \ p_{t/2}(0) \ \mathbb{P}_x(\tau_D > t/4).$$

Proof. By the semigroup property

$$p_t^D(x,y) = \int \int p_{t/4}^D(x,z) p_{t/2}^D(z,w) p_{t/4}^D(w,y) dz dw$$

Lemma

$$p_t^D(x,y) \leq \mathbb{P}_x(\tau_D > t/4) \ p_{t/2}(0) \ \mathbb{P}_x(\tau_D > t/4).$$

Proof. By the semigroup property

$$p_{t}^{D}(x,y) = \int \int p_{t/4}^{D}(x,z)p_{t/2}^{D}(z,w)p_{t/4}^{D}(w,y)dzdw$$

$$\leq p_{t/2}(0)\int p_{t/4}^{D}(x,z)dz\int p_{t/4}^{D}(w,y)dw. \quad \Box$$

Lemma

$$p_t^D(x,y) \leq \mathbb{P}_x(\tau_D > t/4) \ p_{t/2}(0) \ \mathbb{P}_x(\tau_D > t/4).$$

Proof. By the semigroup property

$$p_{t}^{D}(x,y) = \int \int p_{t/4}^{D}(x,z)p_{t/2}^{D}(z,w)p_{t/4}^{D}(w,y)dzdw$$

$$\leq p_{t/2}(0)\int p_{t/4}^{D}(x,z)dz\int p_{t/4}^{D}(w,y)dw. \quad \Box$$

Proposition (Bogdan, Grzywny, Ryznar (ruin probability))

For every symmetric Lévy process in ${\mathbb R}$ which is not compound Poisson,

$$\mathbb{P}_{x}(au_{(0,\infty)}\geq t)pprox 1\wedge rac{V(x)}{\sqrt{t}},\quad t>0,\,x\in\mathbb{R}.$$

Additional references

- K. Bogdan, T. Grzywny, and M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. *Ann. Probab.* 2010.
- Z.-Q. Chen, P. Kim, R. Song, Heat kernel estimates for Dirichlet fractional Laplacian. *J. Eur. Math. Soc.* 2010
- T. Grzywny and M. Ryznar. Potential theory of one-dimensional geometric stable processes. *Colloq. Math.* 2012.
- R. Schilling, R. Song and Z. Vondraček, Bernstein functions. Theory and applications. de Gruyter 2012.
- T. Grzywny. On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes. *Potential Anal.* 2014.
- A. Mimica, Heat kernel estimates for subordinate Brownian motions.
 Proc. Lond. Math. Soc. 2016.
- W. Cygan, T. Grzywny and B. Trojan, Asymptotic behavior of densities of unimodal convolution semigroups. Trans. AMS 2017...

On upper bound of the Dirichlet kernel

Lemma

Consider open
$$D_1, D_3 \subset D$$
 such that $\operatorname{dist}(D_1, D_3) > 0$. Let $D_2 = D \setminus (D_1 \cup D_3)$. If $x \in D_1$, $y \in D_3$ and $t > 0$, then

$$\begin{array}{lcl} p_t^D(x,y) & \leq & \mathbb{P}_x(X_{\tau_{D_1}} \in D_2) \sup_{s < t, \, z \in D_2} p(s,z,y) \\ & + & (t \wedge \mathbb{E}_x \tau_{D_1}) \sup_{u \in D_1, \, z \in D_3} \nu(z-u) \,. \end{array}$$

On lower bound of the Dirichlet kernel

Lemma

Consider open
$$D_1, D_3 \subset D$$
 such that $\operatorname{dist}(D_1, D_3) > 0$. Let $D_2 = D \setminus (D_1 \cup D_3)$. If $x \in D_1$, $y \in D_3$ and $t > 0$, then

$$p_t^D(x,y) \ge t \mathbb{P}_x(\tau_{D_1} > t) \mathbb{P}_y(\tau_{D_3} > t) \inf_{u \in D_1, z \in D_3} \nu(z-u).$$