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Setting

� (E, E, m) and (E∂, E∂, m∂) - two σ-finite measure spaces

� L1 = L1(E,m) and L1
∂ = L1(E∂, m∂)

� D - a linear dense subspace of L1

� A : D → L1 and Ψ0 : D → L1
∂ - linear operators

� A0f = Af , f ∈ D(A0) = N (Ψ0) = {f ∈ D : Ψ0f = 0} -
generator of a substochastic (positive and contractive
C0) semigroup on L1



Problem

Consider the operator (AΨ,D(AΨ)) defined by

AΨf = Af , f ∈ D(AΨ) = {f ∈ D : Ψ0(f ) = Ψ(f )},

where Ψ: D → L1
∂ is a linear operator.

When is (AΨ,D(AΨ)) the generator of

� a C0-semigroup?

� a positive C0-semigroup?

� a (sub)stochastic semigroup?



Greiner’s theorem

AΨf = Af , f ∈ D(AΨ) = {f ∈ D : Ψ0(f ) = Ψ(f )},
is the generator of a C0-semigroup provided that

(a) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

(b) (A0,D(A0)) generates a C0-semigroup

(c) there exist constants γ > 0 and λ0 such that

‖Ψ0f ‖ ≥ λγ‖f ‖, f ∈ N (λI − A), λ > λ0

(d) Ψ: L1 → L1
∂ is bounded

G. Greiner. Perturbing the boundary conditions of a generator.

Houston J. Math., 13(2):213–229, 1987.



Greiner’s approach

Condition

(a) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

implies that D = N (λI − A)⊕N (Ψ0),

Ψ0|N (λI−A) is invertible and the Dirichlet operator

Ψ(λ) :=
(

Ψ0|N (λI−A)

)−1
: L1

∂ → L1

is bounded for each λ ∈ ρ(A0)

A0f = Af , f ∈ D(A0) = N (Ψ0) = {f ∈ D : Ψ0(f ) = 0}



Greiner’s approach

Conditions

(a) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

(c) there exist constants γ > 0 and λ0 such that

‖Ψ0f ‖ ≥ λγ‖f ‖, f ∈ N (λI − A), λ > λ0

imply that Ψ(λ) =
(

Ψ0|N (λI−A)

)−1 satisfies

‖Ψ(λ)‖ ≤
1

λγ

Take f = Ψ(λ)f∂, f∂ ∈ L1
∂ in (c).



Greiner’s approach

If Ψ is bounded then

‖Ψ(λ)Ψ‖ ≤
‖Ψ‖
λγ

,

I −Ψ(λ)Ψ: L1 → L1 is invertible with bounded inverse
and

R(λ,AΨ) = (I −Ψ(λ)Ψ)−1R(λ,A0)

for λ ∈ ρ(A0), λ > max{λ0, ‖Ψ‖/γ}

AΨf = Af , f ∈ D(AΨ) = {f ∈ D : Ψ0(f ) = Ψ(f )},
R(λ,AΨ) := (λI − AΨ)−1



Nickel’s extension to unbounded Ψ

(a) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

(b) (A0,D(A0)) generates a C0-semigroup

(cd) Ψ: D → L1
∂ and there are constants C,ω > 0:

Ψ(λ)Ψ: D → L1 extends to a bounded operator

‖Ψ(λ)Ψ‖ ≤
C

λ
, λ > ω.

Then (AΨ,D(AΨ)) generates a C0-semigroup.

G. Nickel. A new look at boundary perturbations of generators.

Electron. J. Differential Equations 2004(95):1-14, 2004.



Extension to positive semigroups

(i) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

and positive

(ii) (A0,D(A0)) generates a positive C0-semigroup

(iii) for each nonnegative f ∈ D∫
E

Af dm −
∫
E∂

Ψ0f dm∂ ≤ 0

imply: Ψ(λ) =
(

Ψ0|N (λI−A)

)−1 is positive and ‖Ψ(λ)‖ ≤
1

λ

P. Gwiżdż, M. Tyran-Kamińska, Positive semigroups and perturba-

tions of boundary conditions, arXiv: 1807.06992



Extension to positive unbounded Ψ

(i) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

and positive

(ii) (A0,D(A0)) generates a positive C0-semigroup

(iii) for each nonnegative f ∈ D∫
E

Af dm −
∫
E∂

Ψ0f dm∂ ≤ 0

(iv) Ψ: D → L1
∂ is positive and I∂ −ΨΨ(λ) : L1

∂ → L1
∂ is

invertible with positive inverse, λ > ω, I∂ = IdL1
∂

Then (AΨ,D(AΨ)) generates a positive C0-semigroup.



Proof

Consider X = L1 × L1
∂ with norm

‖(f , f∂)‖ =

∫
E

|f | dm +

∫
E∂

|f∂| dm∂, (f , f∂) ∈ L1 × L1
∂.

Define A,B : D(A)→ L1×L1
∂, D(A) = D×{0}, by

A(f , 0) = (Af ,−Ψ0f ) and B(f , 0) = (0,Ψf ) for f ∈ D.

We have D(A) = L1 × {0}, ‖R(λ,A)‖ ≤
1

λ
, R(λ,A) ≥ 0,

λ > 0, and spr(BR(λ,A)) < 1, λ > max{0, ω}

R(λ,A+ B) = R(λ,A)(I − BR(λ,A))−1, I = IdX



Proof

(A+ B)(f , 0) = (Af ,Ψf −Ψ0f ), (f , 0) ∈ D(A) = D × {0},
its part in L1×{0} generates a positive semigroup there

(A+ B)|(f , 0) = (Af , 0) f ∈ D,Ψf −Ψ0f = 0

D((A+B)|) = D(AΨ)×{0}, (A+B)|(f , 0) = (AΨf , 0).

We have

R(λ,AΨ)f = (I + Ψ(λ)(I∂ −ΨΨ(λ))−1Ψ)R(λ,A0)f , f ∈ L1

and if Ψ is bounded then

I+ Ψ(λ)(I∂−ΨΨ(λ))−1Ψ =

∞∑
n=0

(Ψ(λ)Ψ)n = (I−Ψ(λ)Ψ)−1.



Greiner’s and Kato’s theorems

(i) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

and positive

(ii) (A0,D(A0)) generates a positive C0-semigroup

(iiiiv) Ψ: D → L1
∂ is positive and for nonnegative f ∈ D∫

E

Af dm −
∫
E∂

Ψ0f dm∂ +

∫
E∂

Ψf dm∂ = 0 (≤ 0)

Then there is an extension of (AΨ,D(AΨ)) that generates
a smallest substochastic semigroup.

(AΨ,D(AΨ)) is the generator of a (sub)stochastic semi-
group iff spr(ΨΨ(λ)) < 1 for some λ > 0.



Cell cycle

the period between two cell divisions, from the birth of
a cell until its division into 2 daughter cells

pl.wikipedia.org

Smith–Martin model - two phases: A (all or part of G1)
and B (the rest)



Two-phase cell cycle model

(a, x) - age and size of a cell in each phase
TA - random length of phase A, distributed with density h
TB - constant length of phase B

a

x

a

x

TA TB

xm

1
2xm

Phase A Phase B



A piecewise deterministic Markov process

The process X(t) = (a(t), x(t), i(t)) satisfies

a′(t) = 1, x ′(t) = g(x(t)), i ′(t) = 0,

between consecutive times t0, s0, t1, s1, . . ., at the time
sn the cell from the nth generation enters phase B

a(sn) = 0, x(sn) = x(s−n ), i(sn) = 2,

tn+1 = sn+TB the cell divides into two daughter cells

a(tn+1) = 0, x(tn+1) =
1

2
x(t−n+1), i(tn+1) = 1.



Two-phase cell cycle model

p1(t, a, x), p2(t, a, x) - densities of the age and size dis-
tribution of cell in A and B phases; g(x) -size growth rate

∂p1(t, a, x)

∂t
=−

∂p1(t, a, x)

∂a
−
∂(g(x)p1(t, a, x))

∂x
− ρ(a)p1(t, a, x),

∂p2(t, a, x)

∂t
=−

∂p2(t, a, x)

∂a
−
∂(g(x)p2(t, a, x))

∂x
,

p1(t, 0, x) = 2p2(t, TB, 2x), x > 0, t > 0,

p2(t, 0, x) =

∫ ∞

0

ρ(a)p1(t, a, x)da, x > 0, t > 0

ρ(a) = −
H′(a)

H(a)
, H(a) =

∫ ∞

a

h(r)dr



Stochastic semigroup

To simplify presentation assume g(0) = 0;
E = E1 × {1} ∪ E2 × {2}, E1 = E2 = (0,∞)2,
L1 = L1(E1)× L1(E2), f (a, x) = (f1(a, x), f2(a, x))

E∂ = Γ−1 ×{1}∪Γ−2 ×{2}, Γ−1 = Γ−2 = {0}×(0,∞) - incoming
boundaries for a′(t) = 1, x ′(t) = g(x(t))

We have

‖ΨΨ(λ)f∂‖ ≤ max

{
e−λTB ,

∫ ∞

0

h(a)e−λada

}
‖f∂‖

Ψf (0, x) =

(
2f2(TB, 2x),

∫ ∞

0

ρ(a)f1(a, x)da

)



Evolution of densities of the process

There is a stochastic semigroup {S(t)}t≥0 on L1 which
provides solutions of the cell cycle model equations.

Let X(t) = (a(t), x(t), i(t)) be the PDMP.

If the distribution of X(0) has a density f (‖f1‖+‖f2‖ = 1,
fi ≥ 0) then X(t) has a density S(t)f , i.e.,

Pr(X(t) ∈ Bi × {i}) =

∫
Bi

(S(t)f )i(a, x)dadx

for any Borel set Bi ⊂ Ei

P. Gwiżdż, M. Tyran-Kamińska, Densities for piecewise determin-

istic Markov processes with boundary, in preparation



Greiner’s and Kato’s theorems

(i) A : D → L1 and Ψ0 : D → L1
∂ are closed, Ψ0 is onto

and positive

(ii) (A0,D(A0)) generates a positive C0-semigroup

(iii) B : D → L1 and Ψ: D → L1
∂ are positive

(iv) for nonnegative f ∈ D∫
E

(Af + Bf ) dm −
∫
E∂

Ψ0f dm∂ +

∫
E∂

Ψf dm∂ = 0 (≤ 0)

Then there is an extension of (AΨ +B,D(AΨ)) that gen-
erates a smallest substochastic semigroup.
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