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The Problem: Two state space transition functions

[sWSLS18] Two-space approach to absorbing boundary of a
Markov process leads to two distinct types of discrete state spaces:

NX := {1, 2, ...,m}, the set of m “life” states, and
NȲ := {1̄, 2̄, ..., n̄}, the set of n “death” states.

Continuous analogues of NX and NȲ : [distinct copies of R]

Continuums of life and death (cemetary ∂) states RX and RȲ .

Thought Experiment: Two Pipes separated permeable membrane.

Ξ
Xx

ξ

B
Σ

Two types intertwining by possibility of transitioning

(a) from a life state to another life state within RX

(b) from a life state in RX to a death state in RȲ .
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The Setting/ Pitfall of Feller Convolution

Two types of Stochastic kernels:

(a) one-space stochastic kernelQ(x ,B)

(b) Uni-directional two-space stochastic kernel R(x , B̄)

Homogeneous Markov processes (X,Y ) intertwined BW-ECK 1 :

Qt + s(x ,B) =

∫
y ∈R

Qt(x , {dy})Qs(y ,B); (1a)

Rt + s(x , B̄) =

∫
y ∈R

Qt(x , {dy})Rs(y , B̄). (1b)

Function Rs(y , B̄) runs intermediary transition points y to
set B̄.

Integration with respect to the same life measure Qt(x , {dy}).
1Operator Represent is reverse Empathy: S(t + s) = E(t)S(s) [sWSLS18].
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Noncommutative Convolution Needed!

The two-space backward transition equation (1b) can be expressed
in terms of the pair of distribution transition functions (Q,R) 2

Rt + s{B̄} := Rt + s(0, B̄) =

∫
y ∈R

Qt{dy}Rs(0, B̄ − y)

If no distinction between RX and RȲ :

Rt + s{dȳ} = Qt{dy} ? Rs{dȳ} = Rs{dȳ} ? Qt{dy} (2)

Last equality (by commutativity of Feller convolution) is
nonsense.

Language of distributions inadequate: replace distributions
with admissible homomorphisms.

2(Q,R) := (Qt{dy},Rt{dȳ})t > 0 = (Qt(0, {dy},Rt(0, {dȳ})t > 0.
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Admissible Homomorphisms/Generalized Operators

Feller represent Q 7→ (Q ′ : Φ→ C) 7→ (Q := Γ(Q ′) : Φ→ Φ).

〈Q ′, f 〉 = Q ′(f ) :=

∫
R
Q{dy}f (y) for all f ∈ Φ. (3)

Qf (x) = [Q ~ f ](x) := 〈Q ′, f−x 〉 =

∫
R
Q{dy}f (x + y) (4)

Riesz representation Q ′ is a Φ-admissible homomorphism (Set AΦ)

Q ~ f ∈ Φ for all f ∈ Φ, (5)

Test space: ΦU = BUC(R,C), Φ0 := C0(R,C), Φ∞ := C [R,C]
Associative Product ∗ on AΦ (convolution algebra) is defined by

〈Q ′1 ∗ Q ′2, f 〉 = 〈Q ′1,Q2f 〉 for all f ∈ Φ. (6)

Feller convolution of distributions [Q ?R](x) =
∫
RQ{dy}R(x + y).

[Q ? R]′ = Q ′ ∗ R ′; Γ(Q ′ ∗ R ′) = Q ◦R. (7)
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Convolution Product ∗ Replaces Feller convolution

Theorem

Each admissible homomorphism represents a unique distribution,
i.e., the mapping Q 7→ Q ′ is injective. Convolution of distributions
lifts as the product of admissible homomorphisms (7).

[Feller convolution ?] Distribution transition function Q intertwined
by C-K equation (1a) is a Feller convolution semigroup:

Qt + s{dy} = Qt{dy} ? Qs{dy} for all s, t > 0; (8)

Qt + s = Qt ◦ Qs for all s, t > 0. (9)

[Theorem 1] Replace Q by time continuum, q′ := {Q ′t}t> 0, of
admissible homomorphisms on ΦU (”admissible transition
function”). Then Feller convolution semigroup is a star-semigroup:
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Star Semigroup Replaces Feller Convolution Semigroup

Admissible transition function q′ is a star-semigroup:

Q ′t + s = Q ′t ∗ Q ′s for all s, t > 0; (10)

Qt + s = Qt ◦ Qs for all s, t > 0. (11)

For Convolution product ∗ to be required non-commutative
extension of the Feller convolution, use versatility of framework of
admissible homomorphisms is freedom to change test spaces.

Hack 1: Product Test space with Diagonal Group

Hack 2: Dual FWECK: Representation of uni-directional dual
FWECK (cf (1b)) as a star empathy.

Hack 3: Star Empathy machinery generates implicit
convolution Fokker-Planck equation (IFP).
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Forward Extended Chapman-Kolmogorov Equation

Assume kernels Qt(x ,B) and Rt(x , B̄) (of BWECK (1)) have
probability transition density functions qt(x , y) and rt(x , ȳ).
Construct conjugate kernels Q̄t(y ,B) and R̄t(ȳ ,B):

Q̄t(y ,B) :=

∫
x∈B

qt(x , y)dx , R̄t(ȳ ,B) :=

∫
x∈B

rt(x , ȳ)dx , . (12)

Then conjugate transition functions Q̄t(y ,B) and R̄t(ȳ ,B) satisfy
the forward extended Chapman-Kolmogorov equation

Q̄t+s(y ,B) =

∫
x ∈R

Q̄t(y , {dx})Q̄s(x ,B) for all s, t > 0; (13a)

R̄t+s(ȳ ,B) =

∫
x ∈R

R̄t(ȳ , {dx})Q̄s(x ,B) for all s, t > 0. (13b)
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x•
Rt(ȳ ,{dx})

//•ȳ

B•

Qs(x ,B)

OO

Rt+s(ȳ ,B)

DD

Distribution transition functions Q and R defined on distinct
spaces, RX and RȲ . Conjugation operation produces a
corresponding pair of distribution transition functions on RX .

(Q̄, R̄) := (Q̄t{dy}, R̄t{dy})t> 0 = (Q̄t(0, {dy}), R̄t(0̄, {dy}))t> 0

(Q̄, R̄) expresses two-space forward transition equation (13b):

R̄t + s{B} := R̄t + s(0̄,B) =

∫
x ∈R

R̄t{dy}Q̄s(0,B − x). (14)
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Star empathy in a product test space

Let ΦX := BUC (RX ,C) and ΦȲ := BUC (RȲ ,C).

Diagonal additive group G := {(σ, σ)|σ ∈ R} for one
parameter shifts. For each

(
f , ḡ
)
∈ ΦX × ΦȲ , define

corresponding test function ϕ : G → C2 := C× C by
ϕ(σ, σ) =

(
f (σ), ḡ(σ̄)

)
.

Product test space ΦP is set of all such functions ϕ.Admissible
linear functionals are C2 := C‘life ′ × C‘death′-valued.
Replace Qt{dy} on RX and Rt{dȳ} on RȲ by admissible
homomorphisms Q ′t(X ) on ΦX and R ′t(Ȳ ) on ΦȲ . Lift single space
homomorphisms as product space homomorphisms by:

liftings `1 : C→ C2 : z 7→ (z , 0) and `2 : C→ C2 : z 7→ (0, z);

liftings `X : ΦX → ΦP : f 7→ (f , 0Ȳ ) and
`Ȳ : ΦȲ → ΦP : f 7→ (0X , f̄ ).

the projection πX : ΦP → ΦX : ϕ = (f , ḡ) 7→ f .
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Lift Q̄ ′t(X ) and R̄ ′t(X ) as the ΦP -admissible homomorphisms

Q ′P(t) := `1 ◦ Q̄ ′t(X ) ◦ πX , R ′P(t) := `2 ◦ R̄ ′t(X ) ◦ πX
Injection into ”life” [”death”] part of C2 gives life [”death”]
dualism function. Then, corresponding pair of conjugate
ΦP -admissible transition functions (q̄′P , r̄

′
P ) := (Q̄ ′P(t), R̄ ′P(t))t> 0.

Theorem

Let (X,Y ) be a pair of homogeneous Markov processes intertwined
by BWECK (1). Then, in terms of the product ∗, pair of conjugate
ΦP -admissible transition functions (q̄′P , r̄

′
P ) is star-empathy:

Q̄ ′P(t + s) = Q̄ ′P(t) ∗ Q̄ ′P(s); (15a)

R̄ ′P(t + s) = R̄ ′P(t) ∗ Q̄ ′P(s). (15b)

Moreover, Q̄ ′P(s) ∗ R̄ ′P(t) is the zero homomorphism on ΦP .
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Convolution semigroup with a single test space

Framework of Admissible homomorphisms has fully developed
Laplace transform theory: Laplace transform approach to
generators.

Laplace transform theory requires the strong continuity of q̄′P
and r̄′P .

Consider single homogeneous Markov process X with admissible
transition function q′ = {Q ′t}t > 0.

Extra initial condition limt→0+ Qt{dy} = δ0 to Q

Then q′ is a strongly continuous star-semigroup and the dualism
transition function Q := {Qt}t > 0, where Qt = Γ(Q ′t), is an
operator C0-semigroup.

The distribution transition function Q is defective (BWECK).
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Defective convolution semigroup

Proposition

Let Q be a convolution semigroup and defective. Then there exist
a unique c > 0 and a unique distribution transition function
P = {Pt{dy}}t>0 that is a convolution semigroup with proper
distributions such that Qt{dy} = e−ctPt{dy}. The Feller
generator of Q is A− cI , where A is the Feller generator of P.

P is the transition distribution function associated with the
standard Brownian motion. Then we call X a defective Brownian
motion. In this case the Feller generator A of Q is given by

Āf =
1

2
f ′′ − cf for all f ∈ C∞[R,C]. (16)
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Preservation by Conjugation

FWECK stated purely in terms of conjugate transition kernels:

If Q is a convolution semigroup, then so is Q̄: q̄′ is a strongly
continuous star-semigroup and the dualism transition function
Q̄ := {Q̄t}t> 0, where Q̄t = Γ(Q̄ ′t), is an operator
C0-semigroup.

If Q is defective, then so too is Q̄.

Strong continuity of r̄′P follows from strong continuity of q̄′P
[(q̄′P , r̄

′
P ) is a star-empathy].

The Feller generator Ā of Q̄ is given by

Āf =
1

2
f ′′ − cf for all f ∈ C∞[R,C]. (17)

Easily extend to q̄′P
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Conjugate convolution semigroup with a product test space

State spaces RX and RȲ are distinct copies of R: consider two
distinct test spaces

Φ∞(X ) := C [RX ,C] ⊂ ΦX , Φ∞(Ȳ ) := C [RȲ ,C] ⊂ ΦȲ .

BWECK (1b) requires the product test space ΦP associated with
Φ∞(X )× Φ∞(Ȳ ). Here θ′0(X ) := `1 ◦ θ′0 ◦ πX , i.e.,

〈θ′0(X ), ϕ〉 = (〈θ′0, f 〉, 0) = (f (0), 0) for all ϕ = (f , ḡ) ∈ ΦP .

Proposition

If Q is a convolution semigroup, then q̄′P is strongly continuous:

〈Q̄ ′P(t), ϕ〉 → 〈θ′0(X ), ϕ〉 as t → 0+ for all ϕ ∈ ΦP . (18)

Wha Suck Lee Implicit Fokker-Planck Equations: Non-commutative Convolution of Probability Distributions



The Problem
The Solution: Admissible Homomorphisms/Generalized Operators

Analytic Condition near time origin: Single Generator
Implicit Fokker Planck Equation: Pairs of Generators

Setting stage for Laplace Transform Approach

[Q̄t{dy}, R̄t{dy} are probability measures on RX ] q̄′P is
Laplace-closed w.r.t itself and that r̄′P is Laplace-closed w.r.t q̄′P .
[(q̄′P , r̄

′
P ) is a star-empathy]Strong continuity of q̄′P ensures strong

continuity of r̄′P ,

Theorem

The conjugate extended Riesz representation on ΦP of (Q,R)
satisfies the star pseudo-resolvent equations

q̄′P(λ)− q̄′P(µ) = (µ− λ)q̄′P(λ) ∗ q̄′P(µ); (19a)

r̄′P(λ)− r̄′P(µ) = (µ− λ)r̄′P(λ) ∗ q̄′P(µ) (19b)

q̄′P(λ) ∗ Q̄ ′P(t) = Q̄ ′P(t) ∗ q̄′P(λ); (19c)

r̄′P(λ) ∗ Q̄ ′P(t) = R̄ ′P(t) ∗ q̄′P(λ). (19d)
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Defective Brownian motion: λ-potential operator

For λ > 0, let

Q̄P(λ) := Γ(q̄′P(λ)), R̄P(λ) := Γ(r̄′P(λ))

be the dualisms of the Laplace transforms. Then Q̄P(λ) is the
λ-potential operator or resolvent operator.
Let (Q,R) be as in Proposition 2 with Q (defective Brownian).
Then Feller generator of Q̄′P on ∆P := C∞[RX ,C]× Φ∞(Ȳ ):

ĀPϕ =
(

1
2 f
′′ − cf , 0Ȳ

)
for all ϕ :=

(
f , ḡ
)
∈ ∆P . (20)

Moreover, for all ϕ :=
(
f , ḡ
)
∈ ∆P ,

[Q̄P(λ)ϕ](x , x) =

∫ ∞
0

e−(λ+c)t [pt ∗ f ](x)dt for all x ∈ R, (21)

where pt(y) = 1√
2πt

exp
(
− y2

2t

)
is the probability density function

of the standard Brownian motion.
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Example: Defective Brownian motion with a product test
space

Moreover, the ΦP -dualism transition function Q̄P := {Q̄P(t)}t> 0,
where Q̄P(t) = Γ(Q̄ ′P(t)), is an operator C0-semigroup on ΦP .
Let (Q,R) be as above with Q (defective Brownian). Then the
Feller generator of Q̄′P is defined on ∆P := C∞[RX ,C]× Φ∞(Ȳ )

ĀPϕ =
(

1
2 f
′′ − cf , 0Ȳ

)
f or all ϕ :=

(
f , ḡ
)
∈ ∆P . (22)

Since (q̄′P , r̄
′
P ) is a star-empathy, the strong continuity of q̄′P

ensures the strong continuity of r̄′P , i.e., for each ϕ ∈ ΦP , the
mappings t 7→ 〈Q̄ ′P(t), ϕ〉 and t 7→ 〈R̄ ′P(t), ϕ〉 from (0,∞) to C2

are continuous. By the continuity of the dualism mapping Γ, this
also implies the strong continuity of the corresponding dualism
families, Q̄P and R̄P := {R̄P(t)}t > 0, where R̄P(t) = Γ(R̄ ′P(t)).
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Convolution Implicit Fokker-Planck equations

[sWSLS18], Laplace transform derived implicit Fokker-Planck
equations (IFP) for BWECK-intertwined counting processes.
[Unknowns = operator representations of the transition functions.]
Homogeneity: formulation of IFP in framework of admissible
homomorphism: IFP directly in terms of the distributions.

Intertwined Brownian motion (X,Y ): (X,Y ), (Q,R) and
(q̄′P , r̄

′
P ); X is a defective Brownian.

Each fixed ϕ =
(
f , ḡ
)
∈ ∆P , define uP , vP from (0,∞)× R to C2;

vP(t, x) = [Q̄P(t)ϕ](x , x), uP(t, x) = [R̄P(t)ϕ](x , x). (23)

Thus vP(t, x) = (v(t, x), 0), where v(t, x) = [Q̄t(X )f ](x).
[Eq. (22)] vP satisfies convolution FP equation ∂vP

∂t = ĀPvP :

∂

∂t

∫
RX

Q̄t{dy}f (x +y) =
1

2

∫
RX

Q̄t{dy}
( ∂2

∂x2
−c
)
f (x +y). (24)
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Invertibility Assumption

Laplace transforms shows uP(t, x) satisfies a IFP as an implicit
evolution equation in terms of admissible homomorphisms.
We do not derive the (convolution) star implicit evolution equation
directly from the intertwined pseudo-resolvent (q̄′P(λ), r̄′P(λ))λ>0.
Instead, by dualism mapping Γ to equations (25)–(25d), we obtain
analogous equations for the operator-valued dualisms
(Q̄P(λ), R̄P(λ))λ> 0:

Q̄′P(λ)− Q̄′P(µ) = (µ− λ)Q̄′P(λ) ◦ Q̄′P(µ); (25a)

R̄′P(λ)− R̄′P(µ) = (µ− λ)R̄′P(λ) ◦ Q̄′P(µ) (25b)

Q̄P(λ) ◦ Q̄P(t) = Q̄P(t) ◦ Q̄′P(λ); (25c)

R̄′P(λ) ◦ Q̄P(t) = R̄P(t) ◦ Q̄′P(λ). (25d)

Assume that

R̄P(ξ) is invertible for some ξ > 0. (26)
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Computational Power of L1(AΦ)

Then R̄P(λ) is invertible for all λ > 0. For λ > 0, let

∆X := Q̄P(λ)[ΦP ], ∆Ȳ := R̄P(λ)[ΦP ].

Furthermore, the operators A and B from ∆Ȳ to ΦP defined by

B = Q̄P(λ)[R̄P(λ)]
−1
, A = λB − [R̄P(λ)]

−1
,

where A = Ā′PB, where Ā′P is the Feller generator of
Q̄P = {Q̄P(t)}t> 0, and that for each ϕ =

(
f , 0Ȳ

)
∈ ∆X ∩∆P ,

∂

∂t
(BuP) = AuP ; (27a)

lim
t→0+

BuP(t, x) = ϕ(x , x), x ∈ R. (27b)
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Backtrack to Convolution Equations

The implicit evolution equation (27) can be expressed in terms of
the admissible homomorphisms A′ = θ′0(X ) ◦ A and
B ′ = θ′0(X ) ◦ B:

d

dt
〈B ′ ∗ R̄ ′P(t), ϕ〉 = 〈A′ ∗ R̄ ′P(t), ϕ〉 for a.e. t > 0;(28a)

lim
t→0+
〈B ′ ∗ R̄ ′P(t), ϕ〉 = 〈θ′0(X ), ϕ〉. (28b)

In terms of the original homomorphisms R̄ ′t(X ), the second
component of eq. (28a) is simply 0Ȳ = 0Ȳ and the first
component is

∂

∂t
〈B ′∗R̄ ′t(X ), f−x 〉 = 〈B ′∗R̄ ′t(X ),

1

2

( ∂2

∂x2
−c
)
f−x 〉 for a.e. t > 0.

(29)
Note that Q̄ ′t(X ) = B ′ ∗ R̄ ′t(X ) on ∆X ∩∆P .
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