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Heat kernel of isotropic nonlocal operators
I will discuss joint results with Tomasz Grzywny and Michal Ryznar [1, 3, 2].

Letd=1,2,.... Let v: [0,00) — (0, 00| be nonincreasing and denote v(z) = v(|z])
for = € R%. In particular, v(z) = v(—z). We assume that [, v(z)dz = co and

/Rd (J2]> A1) v(2)dz < oco.

Summarizing, v is a strictly positive density function of an isotropic infinite uni-
modal Lévy measure on R%. In short — v is unimodal. For x € R? and u : R? — R,

Lu(z) == lim (u(y) — u(@))v(y — z) dy

e—0t lz—y|>e
- %/}Rd(u(m +2) +u(r — z) — 2u(z))v(z) dz.

The limit exists, e.g., for u € C°(R?), the smooth functions with compact sup-
port. Note that L is a non-local symmetric translation-invariant linear operator
on C®(R?) with positive maximum principle. For example, if 0 < o < 2 and

, ZERd,

CRT(dta)/D),
V%) = SRR a1

then L is the fractional Laplacian, denoted by A®/2. In general, L is the genera-
tor of a Markovian semigroup—the transition semigroup of the isotropic pure-jump
Lévy processes { X;,t > 0} with the Lévy measure v. Thus, X is a cadlag stochas-
tic process with law P, such that X (0) = 0 almost surely, the increments of X are
independent, with radially nonincreasing density function p,(x) on R?, and the
following Lévy-Khintchine formula holds for ¢ € R%:

Eei{6X0) —/ ei<5””>pt(x)dx = e WO where (&) —/ (1 —cos (&, x)) v(dz).
R4 R4

Here E is the integration with respect to P. We note that the Lévy-Khintchine
exponent 1 is radial with the radial profile ¥ (6) = () for £ € R4, [£] = 0.

We estimate the heat kernel pp(t,x,y), t > 0, x,y € D, of smooth open sets
D C R? for the operator L. Our estimates have a form of explicit factorization
involving the transition density p;(x) of the Lévy process on the whole of R¢, and
the survival probability P*(tp > t), where 7p = inf{t > 0: X; ¢ D} is the time of
the first exit of X, from D. Here x € R? and P” is the law of z + X . For instance,



if the radial profile of 1) has the so-called global lower and upper scalings, and D
is a C? halfspace-like open set, then

pD(t7$7y> ~ ]P)m<7—D > t) p(t7xay> ]P)y<7—D > t)a t> Oa T,y € D.

Here,

pila) = =t (1) A %

P*(rp >t) ~ 1V ((1/dp(x))t) "/,

and dp(x) = dist(z, D). The scaling conditions are understood as follows.! We
say that v satisfies the weak lower scaling condition at infinity (WLSC) if there
are numbers a > 0, § > 0 and ¢ € (0, 1], such that

(M) > e (0) for A>1, 6> 0.

We write ¢ € WLSC(a, 8,¢) or v € WLSC. If ¢ € WLSC(q, 0, ¢), then we say
that ¢ satisfies the global WLSC. The weak upper scaling condition at infinity
(WUSC) means that there are numbers @ < 2, 6 > 0 and C'€ [1,00) such that

B(N0) < TATY(0) for A>1, 0>0.

In short, ¢ € WUSC(@, 6, C) or ¢» € WUSC. Global WUSC means WUSC(@, 0, C).

Explicit estimates are also given for bounded smooth sets D, etc.
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!The notation that follows is a bit heavy, but it quantifies monotonicity properties of 1)(\)/\®.
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