JN_p – A GENERALIZATION OF BMO

RIIKKA KORTE AALTO UNIVERSITY

ABSTRACT. In 1961, John and Nirenberg introduced functions of bounded mean oscillation (BMO) and proved that they are exponentially integrable. In the same paper, they also considered a class of larger function spaces, which are now known as JN_p and proved that these functions lie in weak L^p . The space BMO can be seen as the limit of JN_p as $p\to\infty$. It is rather easy to see that JN_p contains L^p and that all weak L^p functions are not in JN_p . It turned out to be more difficult to find a function that is in $JN_p \setminus L^p$, i.e. it was not known, whether JN_p is just a new name for L^p . One reason is that all monotone JN_p functions are in L^p .

We provide an example of a function in $JN_p \setminus L^p$. We also characterize JN_p as the dual of a new space defined in terms of atomic decomposition. This is joint work with G. Dafni, T. Hytönen, and H. Yue.