JEDNOSTKA NAUKOWA KATEGORII A+

Odd prime power values of Fourier coefficients of Hecke eigenforms

Michael A. Bennett, Ritesh Goenka Acta Arithmetica MSC: Primary 11F30; Secondary 11F11, 11D41, 11D59, 11D61 DOI: 10.4064/aa240423-20-2 Opublikowany online: 4 May 2025

Streszczenie

We prove a number of results about odd prime power values of Fourier coefficients of newforms with rational integer coefficients and trivial mod $2$ residual Galois representation. In particular, we show that under mild conditions on such a newform $f(z)$, its Fourier coefficients $\lambda _f(n)$ satisfy $\lambda _f(n) \ne \pm q^\alpha $, $\alpha \ge 0$ integer, unless $n$ is itself a power of $q$, where $q$ belongs to a subset of odd primes less than $100$. For example, this result holds unconditionally for newforms with rational integer coefficients, weight $k = 3a + 1$, $a \ge 7$ odd integer, and level $N = 2^b N_0$, $b \ge 1$ integer, $N_0 \in \{1, 3, 5, 15, 17\}$, for each odd prime $q \lt 100$. We also establish stronger results in the case of level $1$ newforms, extending the results of the first author, Gherga, Patel, and Siksek on odd values of the Ramanujan $\tau $-function.

Autorzy

  • Michael A. BennettDepartment of Mathematics
    University of British Columbia
    Vancouver, BC V6T 1Z2, Canada
    e-mail
  • Ritesh GoenkaMathematical Institute
    University of Oxford
    Oxford OX2 6GG, UK
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek