On interpolation free disks of polynomials converging maximally to power series
Annales Polonici Mathematici
MSC: Primary 30E10; Secondary 41A05, 41A10
DOI: 10.4064/ap241211-10-5
Opublikowany online: 23 June 2025
Streszczenie
We construct a power series $f$ with radius $R$ of convergence, $0 \lt R \lt \infty $, such that for any $\sigma $, $0 \lt \sigma \lt R$, there exists a subset $\Lambda \subset \mathbb N$, a parameter $r_\sigma $, $0 \lt r_\sigma \lt \sigma $, and a sequence $\{p_n\}_{n\in \mathbb N}$ of polynomials converging maximally to $f$ on the disk $$ \overline {D}_{r_\sigma }=\{z \in \mathbb C: |z| \leq r_\sigma \}$$ such that $p_n$ has no points of interpolation to $f$ on $\overline{D}_\sigma $ for $n\in \Lambda $.