JEDNOSTKA NAUKOWA KATEGORII A+

Complex branches of a generalized Lambert $W$ function arising from $p,q$-binomial coefficients

P. Åhag, R. Czyż, P. H. Lundow Annales Polonici Mathematici MSC: Primary 30B40; Secondary 30F99, 33B99, 82B20 DOI: 10.4064/ap240830-1-7 Opublikowany online: 27 August 2025

Streszczenie

The $\psi (x)$-function, which solves the equation $x = \sinh (aw)e^w$ for $0 \lt a \lt 1$, has a natural connection to the renowned Lambert $W$ function and also physical relevance through its connection to the Lenz–Ising model of ferromagnetism. We provide a detailed analysis of its complex branches and construct Riemann surfaces from these under various conditions of $a$, unveiling intriguing new links to the Lambert $W$ function.

Autorzy

  • P. ÅhagDepartment of Mathematics
    and Mathematical Statistics
    Umeå University
    SE-901 87 Umeå, Sweden
    e-mail
  • R. CzyżFaculty of Mathematics
    and Computer Science
    Jagiellonian University
    30-348 Kraków, Poland
    e-mail
  • P. H. LundowDepartment of Mathematics
    and Mathematical Statistics
    Umeå University
    SE-901 87 Umeå, Sweden
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek