JEDNOSTKA NAUKOWA KATEGORII A+

Logarithmic Jacobian ideals, quasi-ordinary hypersurfaces and equisingularity

Pedro Daniel González Pérez Annales Polonici Mathematici MSC: Primary 32S25; Secondary 14M25 DOI: 10.4064/ap241220-13-11 Opublikowany online: 18 December 2025

Streszczenie

Let $(S, 0) \subset (\mathbb C^{d+1},0)$ be an irreducible germ of hypersurface. The germ $(S,0)$ is quasi-ordinary if $(S,0)$ has a finite projection to $(\mathbb C^d,0)$ which is unramified outside the coordinate hyperplanes. This implies that the normalization of $S$ is a toric singularity. One also has a monomial variety associated to $S$, which is a toric singularity with the same normalization, and with possibly higher embedding dimension. Since $(S,0)$ is quasi-ordinary, the extension of the Jacobian ideal of $S$ to the local ring of its normalization is a monomial ideal. We describe this monomial ideal by comparing it with the logarithmic Jacobian ideals of $S$ and of its associated monomial variety and we give some applications.

Autorzy

  • Pedro Daniel González PérezInstituto de Matemática Interdisciplinar (IMI)
    Departamento de Álgebra, Geometría y Topología
    Facultad de Ciencias Matemáticas
    Universidad Complutense de Madrid
    28040 Madrid, Spain
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek